# 潮間帯における津波堆積物の分布様式:北海道東部, 藻散布沼の例

# Distribution pattern of tsunami deposits in an inter-tidal zone around Lake Mochirippu, eastern Hokkaido, Japan

# 鎌滝孝信<sup>1</sup>•澤井祐紀<sup>2</sup>•宍倉正展<sup>3</sup>•佐竹健治<sup>4</sup>•山口正秋<sup>5</sup>•松本 弾<sup>6</sup>

# Takanobu Kamataki<sup>1</sup>, Yuki Sawai<sup>2</sup>, Masanobu Shishikura<sup>3</sup>, Kenji Satake<sup>4</sup>, Masaaki Yamaguchi<sup>5</sup> and Dan Matsumoto<sup>6</sup>

<sup>1,2,3,4</sup> 活断層研究センター (Active Fault Research Center, GSJ/AIST, t.kamataki@aist.go.jp, yuki.sawai@aist.go.jp, m.shishikura@aist.go.jp, kenji.satake@aist.go.jp)

<sup>5</sup> 東京大学大学院新領域創成科学研究科(Graduate School of Frontier Sciences, The University of Tokyo, masaaki@nenv.k.u-tokyo.ac.jp)

<sup>6</sup>京都大学大学院理学研究科(Graduate School of Science, Kyoto University, dandan@kueps.kyoto-u.ac.jp)

**Abstract:** We studied distribution pattern of tsunami deposits in and around Lake Mochirippu, a lagoon extending for a few km from the narrow entrance on the Pacific coast of eastern Hokkaido. From 97 cores in Mochirippu, we identified two prehistoric tsunami deposits. One was formed by the 17<sup>th</sup>-century earthquake, and the other lower one has not been precisely dated yet. The 17<sup>th</sup>-century tsunami deposit can be subdivided into four units named Unit 1 to Unit 4 in ascending order. Unit 1 is composed of poorly sorted medium to fine sand containing many plant fragments and rip-up clasts, and erosionally overlies the peat or mud layers. Unit 2 is composed of well-sorted medium sand, and overlies Unit 1. This unit has the coarsest sediments of the four units. Unit 3 gradationally overlies Unit 2, and is composed of fine alternation of plant fragment laminae and fine to very fine sand layers. Unit 4 gradationally overlies Unit 3, and is composed of sandy silt with plant fragment seams. This unit is gradationally covered by mud or peat. This tsunami deposit ranges in thickness from several to 30 cm. The tsunami deposit extends at least about 2 km from the bay mouth, and shows landward decreases in thickness.

キーワード:北海道東部,海溝型地震,津波堆積物,潮間帯,堆積構造 Keywords: eastern Hokkaido, subduction zone earthquake, tsunami deposits, inter-tidal zone, sedimentary structure

# 1. はじめに

近年,津波堆積物を使って海溝型巨大地震の再来 間隔を推定し,その発生時期や被害に関する将来予 測を試みる研究が数多くなされている(例えば, Atwater, 1987, 1992; 箕浦ほか,1987; Fujiwara et al., 2000; Nanayama et al., 2003). さらに津波堆積物を利 用して,過去に生じた津波の遡上範囲や津波の規模 を推定する研究もなされている(例えば,平川ほか, 2000;七山ほか,2000).このような研究を精度良く おこなうためには,1)津波堆積物の認定,2)再来 間隔の推定,3)津波の遡上(浸水)範囲の推定,4) 津波(地震)の規模の推定,5)波源の推定,を厳密 におこなう必要がある.津波堆積物は,米国のカス ケーディア沈み込み帯(Atwater, 1992),千島海溝沿 岸域(Nanayama et al., 2003),相模トラフ沿岸域 (Fujiwara et al., 2000)などから報告されていて,そ

の堆積構造など堆積学的な特徴も明らかにされつつ ある(例えば, 西村・宮地, 1994; Bondevik et al., 1997;七山ほか, 1998a, b; Nanayama et al., 2000; 藤 原ほか, 2003; Tuttle et al., 2004). しかしながら堆 積物の特徴から確実にその堆積物の形成原因を「津 波」と断定できるまでには至っていない.なぜなら、 津波堆積物も洪水や高潮による堆積物も強い水流に よって形成されるイベント堆積物という点では同様 だからである. 津波堆積物と認定するための現時点 で考えられる有力な手法として、藤原ほか(2003) が内湾の津波堆積物で用いたように、津波が他のイ ベントの波と比べて波長が長いことに着目し、堆積 構造から波形(波長)を読みとることが考えられる. 本研究の調査地域である北海道東部は、千島海溝 に面し海溝型巨大地震による津波の被害を繰り返し 受けてきた地域である.筆者らは、津波による堆積

作用の特徴を明らかにすることを目的として、この

海岸沿いに形成された海跡湖の一つである浜中町藻 散布沼の周辺において、津波堆積物の分布を調査し てきた.本調査地は潮間帯であり、Fujiwara et al. (2000)が対象とした内湾底と、Nanayama et al. (2003)が対象とした沿岸湿原との中間的な環境 といえる.したがって、それらの地域における研究 と比較することで、津波の浸入環境の違いを反映し た津波堆積物の特徴を明らかにできる可能性がある. 本報告では、潮間帯における津波堆積物の分布様式 を藻散布沼を例として記載する.

### 2. 調査概要

調査地域の藻散布沼は太平洋岸に狭い開口部を持 ち,内陸へと約1.5kmの広がりを持つ海跡湖である. 塩性湿地や湿地林を含めるとさらに2km 程度内陸側 へ広がりを持つ. 藻散布沼周辺の干潟, 塩性湿地, および湿地林において5本の測線を引き(第1図)、 それに沿って地表から約1mの深さまでの堆積物を, 長さ1mおよび直径3 cmの gauge-corer と長さ1.5 m および幅10 cmの小型ジオスライサー(高田ほか, 2002)を用いて採取した.採取した堆積物は主に泥 炭層、シルト層、テフラ層、および砂層からなり、 地下1mまでに3枚のテフラ層とその下位に2枚の 砂層が認められることが多い(第2,3,4,5,および6 図). 鍵層とした3枚のテフラは、上位からTa-a(樽 前山起源,西暦1739年),Ko-c2(駒ヶ岳起源,西暦 1694年),および Ta-b(樽前山起源,西暦 1667年) と考えられる.2枚の砂層のうち上位のものは、こ れら3枚のテフラ直下に分布する.この砂層は、上 位に観察される3枚のテフラとの層序関係から、七 山ほかによる一連の研究(七山ほか, 1999; 2000; 2001a, b; 2002a, b) によってこの沿岸域に広く分布す る津波堆積物 Ts3 に相当すると考えられ、17 世紀に 生じた千島海溝を震源とする地震によって引き起こ された津波が形成したとされている (例えば, Nanayama et al., 2003). その津波堆積物は, 調査地域 において現在の海水面からの比高約5mの高さの湿 地林まで確認でき、沼の奥へは海への開口部から塩 性湿地へと2km以上分布を確認した.一方,下位の 砂層は、一部の試料で確認できないこと、鍵層とな る火山灰層がその上下に存在せず対比が困難なこと などから、本報告では扱わないこととする.

#### 3. 津波堆積物の内部構造

それぞれの地点で掘削したコアのなかでも干潟で 観察された津波堆積物は層厚が厚く,内部構造がよ く観察でき,下位から上位へと以下のような4つの ユニットが認識できる(第7図).

ユニット1:下位の泥炭層もしくはシルト層を侵 食して堆積する中粒〜細粒砂層で,下位の地層のリッ プアップクラストや植物片を含む. ユニット2:淘汰の良い中粒~粗粒砂層.4つの ユニットの中で、このユニットが最も粗粒な基質を もつ.明瞭な堆積構造は認められない.干潟奥部や 塩性湿地で観察される津波堆積物中のこのユニット は、植物片を多く含む.

ユニット3:ユニット2から漸移的に変わり,植 物片によって形成されたラミナがみられる細粒~極 細粒砂層で,含泥率が上方へと高くなり,また上方 細粒化する.含まれる植物片の量も上方へと増加す る傾向がみられる.

ユニット4:植物片を多く含むシルト層で、上位 は泥炭層もしくはシルト層によって漸移的に覆われ る.

## 4. それぞれの測線における堆積物の特徴

この津波堆積物は、厚さ約0.5 cmから約30 cmまでで、観察地点による厚さの変化は大きいが、以下に記すように開口部から離れるにしたがって厚さが薄くなる傾向がみられる(第2,3,4,5,および6図).

### (1) 測線 A-A'

湿地林から塩性湿地をへて干潟,再び塩性湿地へ と湖を横切る方向に引いた測線(第1図)で,計27 本のコアを gauge-corer を用いて採取し,観察および 記載をおこなった(第2図). A-A'間(第1図,第2 図の01001地点から01029地点)の距離は約410 mで, コアの間隔は約5mから約35mである.この測線南 部の湿地林(01001地点~01008地点,第2図)では, 表層から地下約1mまでの堆積物中に,上位から, 表層土壤,泥炭層,砂層,泥炭層の順で観察される. 砂層の上位にみられる泥炭層には,3枚のテフラ層 がみられる.これらはそれぞれ,Ta-a,Ko-c2および Ta-bテフラと考えられる.津波堆積物Ts3と考えら れる地層の厚さは南端部で約0.5 cmであるが,湖側 へと徐々に厚くなり,湿地林の北端付近では最大で 11 cm に達する.

塩性湿地(01009地点~01011地点,および01016 地点~01028地点,第2図)における地下約1mま でを構成する堆積物は,上位から泥炭層,砂層,泥 炭層もしくはシルト質泥炭層,生物撹拌作用を受け た砂質シルト層の順で観察される.ここでも最も上 位の泥炭層に3枚のテフラ層が挟まれ,その直下に みられる砂層が津波堆積物 Ts3と判断される.Ts3 の層厚は,湿地林の地下で見られたものよりもさら に厚くなり,8~16 cm である(第2図).干潟(01012 地点~01015地点,および01029地点,第2図)に おける津波堆積物 Ts3 の厚さは15~35 cm で.他の 環境で観察したものよりも厚い.

#### (2) 測線 B-B'

測線 A-A'の西側にほぼ平行に引いた測線(第1図)

に沿って、すべて小型ジオスライサーを用いて、計20本のコアを採取し、観察、記載をおこなった(第3図). B-B'間(第1図,第3図の0401地点から0419地点)の距離は約250mで、コアの間隔は約5 mから約25mである.この測線では、津波堆積物の 内部構造を詳しく観察するために、gauge-corerより も径が太く、断面が平面である小型ジオスライサー を使用した.堆積物の層序および層厚の変化の傾向 は測線 A-A'と同様である.この測線上で観察された 津波堆積物 Ts3の中で代表的な産状を第8図に示す.

#### (3) 測線 C-C'

藻散布沼における最も奥部の測線で、開口部から 約2kmの塩性湿地上に引いた測線である(第1図). 計 17本のコアを gauge-corer を用いて採取し、その うちの6地点で小型ジオスライサーを用いて追加採 取し,観察,記載をおこなった(第4図). C-C'間(第 1図, 第4図の10001地点から10017地点)の距離 は約210 mで、コアの間隔は約5 mから約25 mで ある.この測線上の表層から地下1mまでを構成す る堆積物は泥炭層を主体とし、砂層を1-2枚含む. この測線でも、地下数 cm から数 10 cm 程度の層位 に3枚のテフラ層(Ta-a, Ko-c2 および Ta-b)がみられ, その直下に砂層が分布し、それを津波堆積物 Ts3 と 判断した. Ts3 の層厚は 2~15 cm まで変化する. 測 線 A-A' および B-B' と比べると Ts3 の層厚が薄くなっ ていることが分かる(第2,3,および4図).この 測線上で観察された津波堆積物 Ts3 の中で代表的な 産状を第9図に示す.

### (4) 測線 D-D'

A-A' および B-B' の両測線とほぼ直交する方向(第 1図) に設定し,計 24本のコアを gauge-corer を用い て採取,記載した(第5図).D-D'間(第1図,第 5 図の 02023 地点から 02001 地点)の距離は約 500 m で、コアの間隔は約10mから約40mである.この 測線は干潟の縁辺を測線 A-A' から湖の奥部へと引い たもので、海から入ってくる津波の流向方向に相当 する. 表層から地下約1mまでの堆積物は,上位から, シルト層もしくはシルト質砂層(現在の干潟堆積物), 泥炭層,砂層,砂質シルト層の順に重なる.この測 線上でも、表層から数 cm ~数十 cm の層位に3 枚の テフラ層(Ta-a, Ko-c2 および Ta-b)が泥炭層の中に 挟まれ、その直下には Ts3 層と判断できる砂層が観 察される. Ts3の層厚は, 最も開口部に近い地点 (02001 地点, 第5図) における約15 cm から, 最も 奥部である 02023 地点(第5図)における約2 cm へ と、 増減を繰り返しながら、 大局的には海側の開口 部から離れるにしたがって薄くなる傾向がみられる (第5図).

#### (5) 測線 E-E'

測線 D-D'の北側にほぼ平行に引いた測線(第1図) で、すべて小型ジオスライサーを用いて、計9本の コアを採取、記載した(第6図). E-E'間(第1図, 第6図の0601地点から0609地点)の距離は約 210mで、コアの間隔は約15mから約40mである. この測線では、津波堆積物の内部構造を詳しく観察 するために、gauge-corerよりも径が太く、断面が平 面である小型ジオスライサーを使用して試料の採取 をおこなった. 堆積物の分布に関する特徴は測線 D-D'と同様である. この測線上で観察された津波堆 積物 Ts3 の中で代表的な産状を第10図に示す.

## 5. 藻散布沼における津波堆積物の分布とその特徴

測線 A-A'および B-B'と C-C'で観察される津波 堆積物 Ts3 の層厚を比較すると(第2,3,および4図), 前者 2 測線よりも後者の方が明らかに薄くなってい る.また,測線 D-D'では,開口部に近い地点(第5 図,02001 地点)から湖の奥部へと層厚が薄くなる. このように,藻散布沼における津波堆積物の分布の 特徴は,津波が浸入してくる開口部から湖の奥部へ とその層厚を減ずることである.このような特徴は, Bondevik *et al.*(1997),七山ほか(2002a)などが報 告している津波堆積物とも共通の特徴で,津波が海 跡湖に浸入し,陸方向へと遡上,減衰してゆく現象 を示すものといえる.

また、測線 A-A'(第2図)は、津波の浸入方向と ほぼ直交する断面とみなすことができるが、この断 面では、湖の縁辺部、すなわち堆積盆の縁辺部へと 津波堆積物の層厚が薄くなる.これも津波の流速が 湖の中心で速く、縁辺部で弱くなることを反映した 堆積現象であると考えられる.

藻散布沼周辺でみられる 17 世紀の津波堆積物 Ts3 の内部構造の特徴は、上述した4つのユニットに分 けられることである(第7図). ユニット1で下位の 地層を削剥したリップアップクラストを含むことは, 津波による侵食作用が生じたことを示している. そ の上位のユニット2で最大粒径となることから、津 波の流速が最も速くなったと推定され、ユニット3 を経てユニット4へと積み重なる堆積様式は、津波 の営力の減衰過程での堆積作用を示すと考えられる. 津波イベントによって形成されたと考えられている 砂礫層がいくつかのユニットに区分される例は、北 海道釧路市春採湖の津波堆積物(七山ほか, 2001a), 房総半島南部に分布する完新統に挟まれる津波堆積 物 (藤原ほか, 2003), そして, ノルウェーの北海沿 岸に点在する湖沼の津波堆積物 (Bondevik et al., 1997) などでも知られている. それらの研究では, 津波堆積物中にみられるいくつかのユニットが、津 波による堆積作用を反映して形成されたとしている.

なかでも内湾底に堆積した津波堆積物を対象とした 藤原ほか(2003)は、一枚の津波堆積物を4つのユニッ トに区分し、これらのユニットに観察される堆積構 造を、津波の周期や波高分布と結びつけて解釈した. 4つのユニットは下位から上位へと一度逆級化し、 そして正級化するという特徴を示す. 最も特徴的な ユニットとして、ハンモック状斜交層理(Harms et al., 1975) が発達し、その上面をマッドドレイプで覆 われる砂層のサブユニットが重なった構造を持つユ ニット(藤原ほか,2003のユニットTnb)を挙げ, それを津波すなわち長周期の波が繰り返し押し寄せ たことによって形成された最大の証拠と考えた。本 研究において藻散布沼から得られた津波堆積物から も、下位から上位へと一度逆級化し(ユニット1か らユニット2への変化,第7図),そして正級化する (ユニット2からユニット4への変化)パターンが読 みとれる.しかしながら、藻散布沼の津波堆積物か らは,藤原ほか(2003)によるユニットTnbのよう な特徴を持つユニットは認められない. このような 違いは、ある程度水深のある内湾底と潮間帯という 堆積場の違いを反映している可能性がある.

### 6. まとめ

藻散布沼周辺における17世紀の津波堆積物の特徴は、1)湖の開口部から奥部へと堆積物の厚さが薄くなること、そして2)下位から上位へと4つのユニットに区分されることである.これらの特徴は、津波の遡上に対応した営力の減衰過程を示している可能性がある.

今後,堆積場の地形と津波堆積物の分布との関係 など,さらに検討を加えてゆき,それぞれのユニッ トの形成過程を復元するために,堆積物のより詳細 な観察をおこなってゆく.また,津波の侵食,堆積 作用による堆積モデルを確立するためには,様々な 堆積環境で形成された津波堆積物に対して堆積構造 の観察をおこない,津波堆積物の特徴と形成プロセ スを解明してゆく必要がある.

### 文 献

- Atwater, B. F. (1987) Evidence for great Holocene earthquakes along the outer coast of Washington State. *Science*, **236**, 942-944.
- Atwater, B. F. (1992) Geological evidence for earthquakes during the past 2000 years along the Copalis River, southern coastal Washington. *Journal of Geophysical Research*, 97, 1901-1919.
- Bondevik, S., Svendsen, J. I., Mangerud, J. (1997) Tsunami sedimentary facies deposited by the Storegga tsunami in shallow marine basins and coastal lakes, western Norway. *Sedimentology*, **44**, 1115-1131.

- Fujiwara, O., Masuda, F., Sakai, T., Irizuki, T., Fuse, K. (2000) Tsunami deposits in Holocene bay mud in southern Kanto region, Pacific coast of central Japan. *Sedimentary Geology*, **135**, 219-230.
- 藤原 治・鎌滝孝信・田村 亨(2003) 内湾におけ る津波堆積物の粒度分布と津波波形との関連-房総半島南端の完新統の例-.第四紀研究, 42, 67-81.
- Harms, J. S., Southard, J. B., Spearing, D. R., Walker, R. G. (1975) Depositional environments as interpreted from primary sedimentary structures and stratification sequences. *SEPM Short Course*, 2, 161p.
- 平川一臣・中村有吾・越後智雄(2000)十勝地方太 平洋沿岸地域の巨大古津波.月刊地球号外, No. 31,92-98.
- 箕浦幸治・中谷 周・佐藤 裕(1987)湖沼底質堆 積物中に記録された地震津波の痕跡-青森市浦 村 十 三 付 近 の 湖 沼 系 の 例 -. 地 震, 40, 183-196.
- 七山 太・佐竹健治・下川浩一・重野聖之・小板橋 重一・宮坂省吾・石井正之(1998a) 遡上型津波 津波堆積物の堆積相と堆積過程-1993年北海 道南西沖地震津波の研究例-.月刊海洋号外, No. 15, 140-160.
- 七山 太・重野聖之(1998b) 北海道東部,千島海溝 沿岸域における歴史津波堆積物.月刊海洋号外, No. 15, 177-182.
- 七山 太・佐竹健治・下川浩一・重野聖之・古川竜 太(1999) 堆積学的手法に基づく,千島海溝沿 岸域における古津波?履歴調査-霧多布湿原に おける研究例-.地質調査所速報,No.EQ/99/3(平 成10年度活断層・古地震研究調査概要報告書), 3-17.
- 七山 太・佐竹健治・下川浩一・古川竜太・重野聖 之(2000)イベント堆積物を用いた千島海溝沿 岸域の津波の遡上規模と再来間隔の検討.地質 調査所速報,No.EQ/00/2(平成11年度活断層・ 古地震研究調査概要報告書),1-17.
- Nanayama, F., Shigeno, K., Satake, K., Shimokawa, K., Koitabashi, S., Miyasaka, S., Ishii, M. (2000) Sedimentary differences between the 1993 Hokkaidonansei-oki tsunami and the 1959 Miyakojima typhoon at Taisei, southwestern Hokkaido, northern Japan. Sedimentary Geology, 135, 255-264.
- 七山 太・牧野影人・佐竹健治・古川竜太・横山芳春・ 中川 充 (2001a) 釧路市春採湖コア中に認めら れる,千島海溝沿岸域における過去 9000 年間 に生じた 20 層の津波イベント堆積物.活断層・ 古地震研究報告, No. 1, 233-249.
- 七山 太・重野聖之・牧野影人・佐竹健治・古川竜 太(2001b)イベント堆積物を用いた千島海溝 沿岸域における津波の遡上規模の評価-根室長

節湖,床潭沼・馬主来沼・キナシベツ湿原およ び湧洞沼における研究例.活断層・古地震研究 報告, No. 1, 251-272.

- 七山 太・牧野影人・古川竜太・重野聖之・佐竹健治・ 加賀 新・小板橋重一・石井正之(2002a)イベ ント堆積物を用いた津波の遡上規模と再来間隔 の評価-千島海溝沿岸域における研究例-.月 刊海洋号外, No. 28, 138-148.
- 七山 太・重野聖之・三浦健一郎・牧野影人・古川 竜太・佐竹健治・斎藤健一・嵯峨山 積・中川 充 (2002b) イベント堆積物を用いた千島海 溝沿岸域における先史~歴史津波の遡上規模の 評価-+勝海岸地域の調査結果と根釧海岸地域 との広域比較-.活断層・古地震研究報告, No. 2, 209-222.
- Nanayama, F., Satake, K., Furukawa, R., Shimokawa, K., Atwater, B. F., Shigeno, K., Yamaki, S. (2003)

Unusually large eaethquakes inferred from tsunami deposits along the Kuril trench. *Nature*, **424**, 660-663.

- 西村裕一・宮地直道(1994)北海道南西沖地震に伴 う津波堆積物の分布及び粒度特性.月刊地球号 外, No. 7, 139-147.
- 高田圭太・中田 高・宮城豊彦・原口 強・西谷義 和(2002)沖積層調査のための小型ジオスライ サー(Handy Geoslicer)の開発.地質ニュース, 579, 12-18.
- Tuttle, M. P., Ruffman, A., Anderson, T., Jeter, H. (2004) Distinguishing tsunami from storm deposits in eastern North America: the 1929 Grand Banks tsunami versus the 1991 Halloween storm. *Seismological Research Letters*, **75**, 117-131.

(受付:2004年9月22日,受理:2004年10月28日)



145°E

第1図. 調査地域と調査測線. 1999年9月撮影の国土地理院空中写真を使用. Fig. 1. Index map of the study area. Red lines show survey lines.



37















第9図、測線C-C'上における津波堆積物Ts3、第4図の10004地点、 Fig. 9. Characteristic features of tsunami deposit Ts3 on survey line C-C' at core site 10004. See in Fig. 4 for the location.