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1. Introduction

The 2016 Kumamoto earthquake sequence, including 
the MW 7.0 (MJMA 7.3) mainshock on 16 April, devastated 
central Kyushu, Japan, resulting in 273 deaths and more 
than 2,809 injuries (Fire and Disaster Management 
Agency, 2019). It was caused primarily by slip on the 
eastern segment of the Futagawa fault zone and its western 
and eastern extensions, and the northernmost part of the 
Hinagu fault zone (e.g., Earthquake Research Committee, 
the Headquarters for Earthquake Research Promotion 
(hereafter ERC HERP), 2016; Shirahama et al., 2016; 
Kumahara et al., 2017; Suzuki et al., 2017) (Fig. 1b). 
Estimates of the Coulomb stress transfer from this event 
indicate changes in the crustal stress state in central 
Kyushu that might affect the timing of large earthquakes 
on nearby faults (Toda, 2016).

The ENE–WSW-trending Midorikawa fault zone, 
which extends for ∼34 km and lies ∼20 km south of the 
Futagawa fault zone, is one of the nearest active faults to 
the Futagawa fault zone. It is considered to be a primary 
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active fault in central Kyushu that, given its length, could 
generate a large (magnitude 7.4) earthquake (ERC HERP, 
2013c) (Fig. 1b). The static Coulomb stress on the eastern 
part of the Midorikawa fault zone appears to have 
increased as a result of the 2016 earthquake (Toda, 2016). 
However, its recent faulting history is unknown, which has 
hampered seismic hazard evaluations in central Kyushu 
subsequent to the Kumamoto earthquake sequence. Here, 
we present the results of the first paleoseismological 
investigation of the Midorikawa fault zone, which was 
performed in late 2015 and early 2016. This report is 
mainly based on previous reports by the National Institute 
of Advanced Industrial Science and Technology (2016) 
and Togo et al. (2016), with some additions and revisions.

2. Geology and geomorphology of the Midorikawa 
fault zone

Kyushu lies on the Eurasian (or Amur) plate west of the 
Nankai trough, where the Philippine Sea plate subducts 
northwestward at a convergence rate of ∼70 mm/yr 
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(Loveless and Meade, 2010) (Fig. 1a). Geodetical 
observations show that central Kyushu is dominated by 
N–S extension (Sagiya et al., 2000). Given the angle 
between the strike of the fault and the orientation of 
extension, the Midorikawa fault zone is considered to have 
undergone mainly north-side-down normal faulting with a 
dextral component during the late Quaternary (e.g., Chida, 
1980; Research Group for Active Faults of Japan (hereafter 
RGAFJ), 1980, 1991; The Research Group for Active 
Tectonics in Kyushu (hereafter RGATK), 1989). This fault 
zone is partially coincident with the Usuki–Yatsuriho 
Tectonic Line, a major boundary fault in the Kyushu 
region that divides southwestern Japan into the outer zone 
in the south and the inner zone in the north (Iki, 1901; 
Saito et al., 2005, 2010). The Midorikawa fault zone 
occupies a topographic boundary between the northern 
slope of the Kyushu Mountains to the south and a plateau 
to the north that is covered by materials erupted from Aso 
Volcano (Fig. 1b). Historically, no earthquakes of large or 
moderate size have been reported on this fault zone.

Previous geomorphological interpretations based on 
aerial photographs show that the Midorikawa fault zone 
comprises several faults: from east to west these are the 
Kamano fault, the Gezu fault, the Kiharadani fault, and the 
Midorikawa fault (RGAFJ, 1980, 1991; RGATK, 1989; 
ERC HERP, 2013c) (Fig. 1b). The Kamano fault has the 
strongest geomorphic expression. Chida (1980), RGAFJ 
(1980, 1991) and RGATK (1989) reported that the 
Kamano fault displaces the depositional surface (Surface 1 
in Figs. 2 and 3) of pyroclastic flow deposits (Aso-4) from 
a gigantic eruption of Aso Volcano (e.g., Watanabe, 1978; 
Machida and Arai, 2003), where it forms a distinct graben-
like depression with two nearly parallel fault scarps facing 
each other; here we refer to the northern (i.e., south-
facing) scarp as Kamano I and the southern (north-facing) 
scarp as Kamano II following RGAFJ (1980, 1991) and 
RGATK (1989) (Fig. 2). The age of the Aso-4 eruption 
was recently reported to be 88 ka (Nagahashi et al., 2007) 
and ~87 ka (Aoki, 2008; Smith et al., 2013). Based on the 
vertical offset of Surface 1 by 3 m on the Kamano I fault 
and 6 m on the Kamano II fault and a depositional age of 
70–80 ka for the Aso-4 pyroclastic flow, RGAFJ (1991) 
estimated long-term vertical slip rates of 0.04 mm/yr for 
the Kamano I fault and 0.09 mm/yr for the Kamano II 
fault. The difference between these slip rates corresponds 
to a net north-side-down vertical slip rate across the 
Kamano fault zone of 0.05 mm/yr. However, high-
resolution digital elevation data from a recent Light 
Detection And Ranging (LiDAR) survey show that the 
vertical offsets of surface 1 on the Kamano fault are 
clearly larger than those reported previously, and the net 
vertical offset is 8–10 m (Fig. 3). Combining this offset 

and the revised age of the Aso-4 deposits yields an 
estimated net vertical slip component of ~0.1 mm/yr on 
the Kamano fault.

The Gezu, Kiharadani, and Midorikawa faults are 
marked by prominent topographic lineaments, but there 
are no topographic features that indicate recent faulting 
activity (Chida, 1980; RGAFJ, 1980, 1991; RGATK, 
1989; Nakata and Imaizumi, 2002). On the Gezu fault, 
which runs parallel to the Kamano fault a few hundred 
meters to the south, no fault scarps displace Surface 1, 
indicating that it has likely been inactive since ~88–87 ka 
(Fig. 3). The Kiharadani and Midorikawa faults are not 
amenable to geomorphic analysis because they do not 
cross any clear geomorphic surfaces of late Pleistocene 
age. We undertook a paleoseismological investigation 
including trenching and drilling on the central part of the 
Kamano II fault, across a distinct north-facing scarp 2 m 
high (Fig. 4).

3. Paleoseismic trenching

3.1. Description
We excavated a trench 17 m long, 4 m wide, and 4 m 

deep across the topographic scarp of the Kamano II fault 
at Kariya, Yamato Town, Kumamoto Prefecture (Figs. 2 
and 4). The trench walls were cleaned and gridded at 
0.5 m (horizontal)×1 m (vertical) spacing and logged at a 
scale of 1:20 (Figs. 5–7).

The trench walls exposed eolian sediments and soils, 
including weathered tephric loess deposits, a tephra fall 
layer, organic-rich paleosols, and fissure fills. We divided 
them into five stratigraphic units on the basis of 
sedimentary facies (Units 1 to 5 from top to bottom) plus 
Unit α, representing fissure fill. Units 1 and 2 were further 
divided into subunits on the basis of differences in color 
and grain size (Figs. 5 and 6). Features of each unit and 
subunit are summarized in Table 1.

Among these units, which are predominantly gray to 
black soils and tephric loess deposits, Unit 3 stands out as 
an orange to dark orange layer 20–30 cm thick composed 
mainly of well-sorted pumice clasts 2 to 6 mm in diameter. 
We identified Unit 3 as the Kusasenrigahama pumice fall 
layer (Kpfa), erupted c. 30 ka from Aso Volcano (Watanabe 
et al., 1982; Miyabuchi et al., 2003; Miyabuchi, 2009), on 
the basis of tephra analyses performed for the overlying 
unit (Unit 2) described below and its consistency with the 
mapped thickness distribution of Kpfa (Fig. 1b). The 
trench walls clearly exposed a series of four north-side-
down faults at the base of the topographic scarp (Figs. 
4–7), which we refer to as Faults F1 to F4 from north to 
south. The east and west walls of the trench were quite 
similar.
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3.2. Deformation of strata
Our examination of the trench showed that Faults F1 to 

F4 each consist of multiple strands with various dips and 
dip directions, but all have near-vertical dips and display 
offsets down to the north (Figs. 5 and 6). Each fault is 
accompanied by fissures of various sizes filled by material 
of Unit α. Signs of dextral slip on the floor of the trench 
include shear fabric and asymmetric spindle-shaped 
depressions filled by Unit α (Fig. 8). These structural 
features define the Kamano II fault as a steeply dipping 
extensional normal fault zone with a dextral slip 
component.

Faults F1 to F4 and their associated fissures affect units 
up to and including Unit 1c, but their apparent vertical 
offsets do not affect Unit 1b (Figs. 5 and 6). Fault F1, a set 
of several steeply dipping faults, displaces Units 5 to 1c 
but not Unit 1b (Fig. 5). Its offsets of the bases of Units 4 
through 2a are nearly uniform (0.6 to 0.8 m) (Figs. 5 and 
6). Fault F2 consists of two steeply dipping faults that 
bound a fissure that ends at Unit 1b (Fig. 5). Fault F3 
appears on the west wall as a north-dipping fault and a 
south-dipping subsidiary fault that define a small horst-
like mound (Fig. 5). The deformation of Fault F3 varies 
from a distinct displacement below Unit 2b to a gentle 
warping in Units 2b and 2a, but its offsets are similar (0.5 
to 0.8 m) at the tops of Units 4 to 2a. Fault F4, like Fault 
F3, varies from a distinct displacement in Units 5 through 
3 to a gentle warping in Unit 2a (Figs. 5 and 6). It offsets 
the base of Units 3 and 2b by 0.8 m and the base of Unit 
2a by less than 0.3 m.

3.3. Age control
We performed AMS radiocarbon dating and tephra 

analyses to constrain the age of the stratigraphic units and 
the timing of paleoseismic events. Lacking particles of 
wood or charcoal, we used bulk samples of organic 
sediment from some units, including Unit α, for 
radiocarbon analysis (Table 2, Fig. 5). These showed 
consistency between stratigraphic positions and ages.

We took tephra samples at 10 cm intervals from Units 
2b and 2a in grids W6.7 (TLW1) and W2.7 (TLW2) of the 
west wall (Table 3, Fig. 5). Mineral counts, 
characterizations of volcanic glass surfaces, and refractive 
index determinations were conducted following the 
procedure of Furusawa (1995). The results show that the 
widespread Aira-Tn (AT) tephra from Aira Caldera (c. 30 
ka; Smith et al., 2013; Fig. 1a) is concentrated in the lower 
half of Unit 2a, suggesting that this unit was deposited at 
or near the time of the AT eruption. The lower half of Unit 
2a lies 0.5 to 1 m above the top of the thick tephra in Unit 
3 (Fig. 5) consistent with the occurrence of the Kpfa 
tephra 0.5 to 1 m below AT elsewhere around Aso Volcano 

(Miyabuchi et al., 2003). This evidence strongly suggests 
that Unit 3 is the Kpfa tephra. The tephrochronological 
evidence from Units 2a and 3 is inconsistent with the 
younger radiocarbon date obtained for the underlying Unit 
4 (sample CW14 in Table 2), which may reflect the 
presence of young carbon. We therefore relied on 
tephrochronology to constrain the timing of the 
paleoearthquakes discussed below.

3.4. Paleoseismic events
Details of the trench exposures allowed us to identify a 

paleoseismic event horizon, which represents the ground 
surface at the time of a paleoearthquake. The fissures 
associated with Faults F1 to F4 are filled by Unit α, 
composed of fragments of Units 2a, 1d, and 1c. 
Furthermore, Units 1d and 1c are nearly absent between 
Faults F1 and F4, whereas they are present to the north of 
Fault F1 and to the south of Fault F4 (Figs. 5 and 6). We 
interpret these findings as the result of the formation of 
fissures during surface faulting that occurred after the 
deposition of Unit 1c. Near-surface materials of Units 2a, 
1d, and 1c filled the fissures immediately, followed by the 
collapse and erosion of the fault scarp (Fig. 9a). This 
interpretation is supported by the radiocarbon ages of Unit 
α (samples CW8, CW9, CW11), which are consistent with 
those from Units 1d (samples CW3, CW7, CW15) and 1c 
(sample CW5) (Table 2). Indeed, Unit 1b covers the tops 
of the fissures and is not present within them (Figs. 5, 6, 
and 9a).

The trench revealed no clear evidence for any preceding 
scarp-forming events, such as angular unconformities, 
colluvial wedges, abrupt changes in stratal deformation, 
and liquefaction features (Figs. 4 and 5). The possible 
exceptions are the variation of apparent vertical offsets 
across Fault F4, mentioned above, and the upward 
termination of Faults F3 and F4 within Unit 2b. These 
would be consistent with an event (hereafter the possible 
event) with a small north-side-down vertical offset that 
occurred after or during the deposition of Unit 2b and 
before the deposition of Unit 2a (Fig 9b). However, we 
consider such an event unlikely for several reasons (Fig. 
9a). First, Unit 2 is a weathered volcanic ash (weathered 
tephric loess deposit) that developed on an unstable north-
facing slope, accounting for its variable thickness as 
shown in Fig. 10, and it cannot be considered a reliable 
recorder. Second, the vertical offset of the base of Unit 2a 
in the east wall, a broad deformation above the upper tip 
of Fault F4, appears not to differ from the offsets of the 
bases of underlying Units 2b and 3 (Fig. 6). Third, 
between grids E7 and E8, Unit α fills the fissure formed by 
the latest event but does not cut Fault F4, and instead 
appears to fill a branch of Fault F4. Fourth, although 
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numerous distinct fissures are connected to the latest event 
horizon, none are evident at other stratigraphic levels on 
Faults F3 and F4. Fifth, no colluvium that would be 
expected to be shed from a fault scarp is present in Unit 2b 
on the downthrown side of Faults F3 and F4. Sixth, the 
difference in vertical offsets between Units 2b and 2a may 
be an artifact of strike-slip faulting during the latest event, 
as observed on the trench floor. Seventh, if the strike-slip 
component of faults exposed in the trench is substantial, 
given the fact that most strike-slip fault strands have been 
reported to die out before reaching the ground surface at 
the time of the earthquake, it is not appropriate to consider 
the disappearance of Faults F3 and F4 within Unit 2b as 
evidence of an independent event without other 
paleoseismic indicators like scarp colluvium or fissures 
(McCalpin et al., 2009).

Our preferred interpretation of this evidence is that the 
latest event at the trench site postdates the deposition of 
Unit 1c and predates the deposition of Unit 1b, and the 
preceding event predates the deposition of the oldest unit 
(Unit 5) in the trench. Radiocarbon dating of samples from 
Units 1c (CW5) and 1b (CW12) constrains the timing of 
the latest event to between c. 7,670 cal BP and c. 1,740 cal 
BP (Table 1, Fig. 9a). The inferred age of the tephra in 
Unit 3 constrains the preceding event to be older than c. 
30 ka (Table 2). If the possible event postdated the 
deposition of Unit 2b and predated the deposition of Unit 
2a, its timing would be c. 30 ka based on the ages of Unit 
3 and the lower part of Unit 2a. The vertical offset during 
the latest event is estimated to be 2.1 m based on the offset 
of the base of Unit 3 (Fig. 10). If the possible event did 
occur, this vertical offset corresponds to the cumulative 
displacement of the two events. The steep dip of the fault 
surfaces and the shear fabric exposed on the trench floor 
suggest that dextral slip also occurred during the latest 
event, but its amount is indeterminate.

4. Drilling survey

We obtained four drill cores, ranging in depth from 9.0 
m to 11.0 m, in a section perpendicular to the scarp (Fig. 
4a): Cores N-1 and N-2 on the downthrown side and 
Cores-S1 and S-2 on the upthrown side. All of the cores 
contain an orange pumice layer that correlates with Unit 3 
in the trench, and all of them bottom out in pyroclastic 
flow deposits (Fig. 10). The pyroclastic flow deposits 
consist of dacitic rocks and volcanic ash. The rocks 
include pumice, volcanic glass particles, and crystal 
fragments. The uppermost part of the deposits is an orange 
nonwelded tuff breccia. This material is similar to Aso-4 
pyroclastic flow deposits elsewhere (e.g., Saito et al., 
2005). The top of these deposits deepens to the north by 4 

m between Cores S-2 and N-2, near the downward 
extension of the normal faults exposed in the trench. This 
is consistent with repeated faulting events since the late 
Pleistocene, although a non-tectonic origin of the 4 m 
drop, such as erosion or mass movements, is not 
precluded.

5. Discussion and implications

Our study suggests that the Kamano II fault, an eastern 
section of the Midorikawa fault zone, ruptured once during 
the Holocene with a vertical offset of 2.1 m. It is likely 
that its counterpart across the linear depression, the 
Kamano I fault, ruptured simultaneously. If the vertical 
component of slip rate on the Kamano II fault is twice as 
great as that of the Kamano I fault (as reported by previous 
studies) or greater (as shown in Fig. 3), the net vertical 
offset of the entire Kamano fault associated with this event 
is≥1.2 (∼2.1) m. This net vertical offset, estimated near 
the eastern terminus of the Midorikawa fault zone, is 
comparable to the measured surface offsets along the ∼34 
km of surface ruptures associated with the 2016 
Kumamoto earthquake, although those displayed primarily 
lateral offsets (e.g., Shirahama et al., 2016; Kumahara et 
al., 2017) (Fig. 1b). The similar amounts of slip during the 
Holocene event on the Kamano fault and the 2016 
Kumamoto earthquake sequence might suggest that the 
entire length of the Midorikawa fault zone ruptured 
simultaneously during its latest event, although distinct 
geomorphic evidence of this event is lacking in the central 
and western parts of the fault zone. The lack of such 
evidence may be attributed to high erosion and deposition 
rates in this mountainous region combined with the low 
slip rate and long recurrence interval of surface-rupturing 
earthquakes on the fault zone. If the vertical offset of 2.1 
m was the cumulative displacement of two events 
including the possible event, the rupture extent might have 
been much smaller for each individual event.

The recurrence of a large earthquake equivalent to the 
latest event is probably not imminent, considering the 
short elapsed time since the latest event (c. 1,810 yr to c. 
7,740 yr) compared to the interval since the preceding 
event (at least c. 22,330 yr to c. 28,260 yr), and assuming 
that this fault displays characteristic and periodic seismic 
behavior (e.g., Shimazaki and Nakata, 1980; Schwartz and 
Coppersmith, 1984). Such an evaluation would remain 
largely unchanged even in the existence of the possible 
event. However, recent paleoseismological studies have 
shown that surface-rupturing earthquakes on major active 
faults (or segments) occur more irregularly or in clusters, 
some of which are probably triggered by ruptures on 
nearby faults (e.g., Litchfield et al., 2010; Rockwell, 
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2010). If we extend the net vertical slip rate of ∼0.1 mm/yr 
over the elapsed time since the latest event on the Kamano 
II fault, then the Midorikawa fault zone has stored crustal 
strain corresponding to a vertical slip of up to 0.8 m near 
its eastern terminus. Such an event could cause widespread 
damage in central Kyushu from landslides and slope 
failures like those that occurred in elevated areas during 
the 2016 Kumamoto earthquake sequence (e.g., Dai et al., 
2017; Tajima et al., 2017). Further paleoseismic studies on 
the Kamano and related faults are needed to properly 
unravel the past behavior and evaluate the future activity 
of the Midorikawa fault zone.
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【追加】

2016 年熊本地震の起震断層に近接する緑川断層帯

における大地震の可能性

丸山　正・吉岡　敏和・向井　理史・堀川　滋雄

緑川断層帯は，九州中部の地震災害を評価する上

で重要な活断層であるにもかかわらず，最近の活動

は不明である．断層帯東端部では，Aso-4 火砕流堆

積物からなる地形面に発達する地溝状の凹地を横切

る上下方向の平均変位速度は約 0.1 mm/yr と見積も

られる．山都町仮屋地区で実施したトレンチ調査の

結果，後期更新世から完新世の地層を変形させる複

数の正断層が認められた．約 2.1 m 北側落下の変位

を伴う最新イベントが約 7,670 cal BP から約 1,740 cal 
BP の間に発生し，先行するイベントが約 30 ka より

前に発生したと考えることが妥当と解釈した．群列

ボーリングで検出された Aso-4 上端の約 4 m の北側

下りの高低差は，断層活動の繰り返しを示す可能性

がある．最新活動時には，熊本地震の地震断層の規

模に匹敵する断層帯全体が破断した可能性がある．

断層周辺の歪の蓄積速度が一定と仮定すると，緑川

断層帯東端部では最大約 0.8 m の上下変位を伴う活

動が生じる可能性がある．
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Table 1. Stratigraphic units exposed in the trench at the Kariya site.

Stratigraphic
unit

Environment Color Description

0 Artificial fill
Black, dark

brown and light
brown

Mainly organic sandy silt including abundant tephric silt blocks. Contains
roots, wood and bamboo fragments, and artificial materials.

1a Soil Black
Highly organic silty sand. Mainly very fine to fine grained tephra. Unit was
removed in most of the trench due to early construction work.

1b Soil Black
Highly organic sandy silt. Mainly very fine to fine grained tephric loess.
Exposed only north of grids W8 and E10. Thickness 30–40 cm. Overlies
Faults F1  and F2  and related fissures.

1c Soil Blackish brown

Clayey silt containing abundant very fine to fine grained tephra. Exposed
only north of grids W11 and E12 and at the south end of the trench.
Thickness 20–40 cm; gradually thickens to the north. Contains minor orange
glassy tephra in the middle to lower part. Boundary with underlying Unit 1d is
unclear and usually gradual.

1d Soil Black

Highly organic clayey silt. Mainly exposed north of grids W11 and E10;
partly exposed south of grids W1 and E2. Thickness 20–40 cm; gradually
thickens to the north. Boundary with underlying Unit 2a is generally indistinct
and highly undulate.

2a
Weathered

tephric
loess

Light yellowish
brown to

yellowish brown

Mainly silt and abundant fine to very fine sand. Exposed throughout the
trench. Thickness varies widely owing to undulating boundary with
underlying Unit 2b. Thickness is 70–90 cm south of grids W6 and E7 and 80–
110 cm north of grids W6 and E7. Numerous subvertical cracks filled by
clayey silt–sand present in upper part. Contains cryptotephra correlated with
c . 30 ka Aira-Tn (AT) tephra.

2b
Weathered

tephric
loess

Greenish dark
yellow brown

Sandy silt to sandy clay, containing fine to medium sand and sporadic coarse
sand and granules. Boundary with underlying Unit 3 is indistinct and strongly
undulating. Thickness varies from 50–70 cm south of grids W6 and E7 to 70–
80 cm north of grids W6 and E7.

3 Pumice fall Orange to dark
orange

Mainly well-sorted pumice containing 2–6-mm-diameter clasts (c . 30 ka
Kusasenrigahama pumice). Generally weathered to clay. Thickness 20–30
cm; slightly thicker on the west wall.

4 Paleosol Greenish dark
yellow gray

Organic clay. Mainly clay; organics in upper part. Thickness 20–30 cm.
Boundary with underlying Unit 5 is gradual.

5
Weathered

tephric
loess

Light grayish
yellow

Mainly homogeneous massive silty clay. Thickness ≥80 cm. Exposed south of
grids W10 and E10.

α Fissure fill Black to dark
brown

Organic clay with numerous fragments of Units 2a, 1d, and 1c.

Table 1. Stratigraphic units exposed in the trench at the Kariya site.
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Table 2. AMS radiocarbon dating results for samples from the west wall of the trench at the Kariya site*.

Sample
number

Stratigraphic
unit

Lab. Number δ13C
 (‰)

CW4 1b Beta-431250 –15.4 1,130  ± 30
1,080–950

1,120–1,090
1,180–1,160

(88.9%)
 (3.5%)
(3.0%)

CW12 1b Beta-431256 –17.1 1,930  ± 30 1,930–1,740  (95.4%)

CW5 1c Beta-431251 –20.4 6,720  ± 30 7,540–7,510
7,670–7,560

(17.3%)
(78.2%)

CW3 1d Beta-431249 –20.4 8,670  ± 30 9,690–9,540  (95.4%)

CW15 1d Beta-431258 –20.9 9,010  ± 40

9,990–9,960
10,030–10,010
10,070–10,040
10,250–10,120

(4.6%)
(0.7%)
(2.5%)
(87.7%)

CW7 1d Beta-431252 –20.9 9,280  ± 30 10,320–10,300
10,580–10,330

(2.6%)
(92.8%)

CW14 4 Beta-431257 –19.6 23,370  ± 90 27,760–27,350  (95.4%)

CW9 α Beta-431254 –21.7 7,710  ± 30 8,550–8,410
8,590–8,570

(93.6%)
 (1.9%)

CW8 α Beta-431253 –21.1 8,200  ± 30 9,280–9,020  (95.4%)

CW11 α Beta-431255 –21.2 8,250  ± 30

9,050–9,030
9,110–9,090
9,330–9,120
9,410–9,350

(2.1%)
(1.8%)
(82.6%)
(9.0%)

Conventional
14C age (14C BP)

(±1σ)

Table 2. AMS radiocarbon dating results for samples from the west wall
of the trench at the Kariya site*.

Calibrated age range
(cal BP)

(95.4% probability)

* Analyses by Beta Analytic Inc., Miami. All samples consisted of organic sediment and were pretreated
with an acid wash. Conventional age calculations assume Libby half-life of 5,568 yr. Calibrations were
done with OxCal v. 4.4 (Bronk Ramsey, 2001, 2009) and the IntCal20 atmospheric curve (Reimer et al .
2020). All ages are rounded to the nearest decade.
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Table 3. Results of tephra analyses for two columnar samples from the west wall of the trench at the Kariya site.

Bw Pm O Opx Gho Cum
LW1-17 243 2 15 274 21 0 0.1
LW1-16a 196 4 14 183 23 0 0.0
LW1-15 221 17 19 205 26 0 0.0

LW1-14 284 13 43 220 30 0 0.1 1.497-1.504
 (mode 1.497-1.500)

Aira–Tn

LW1-13 733 11 50 167 42 0 0.3 1.497-1.501 Aira–Tn

LW1-12 803 21 94 137 46 0 0.2 1.497-1.503
 (mode 1.497-1.501)

Aira–Tn

LW1-11 542 20 59 216 53 0 0.3 1.497-1.501 Aira–Tn
LW1-10 916 24 115 122 57 0 0.0 1.497-1.501 Aira–Tn
LW1-9 1031 28 55 146 40 0 0.1 1.497-1.501 Aira–Tn
LW1-8 360 39 47 243 22 0 0.0
LW1-7 59 22 41 364 6 0 0.0
LW1-6 9 22 40 382 3 0 0.1
LW1-5b 5 52 64 308 0 0 0.0
LW1-4 1 50 22 225 2 0 0.0
LW1-3 6 34 36 306 3 0 0.0
LW1-2 18 115 28 202 1 0 0.0
LW1-1 7 193 15 291 0 0 0.0

LW2-11c 254 2 14 301 19 0 0
LW2-11b 253 6 21 361 28 0 0
LW2-11a 305 3 13 366 41 0 0.1 1.497-1.501 Aira–Tn
LW2-10a 491 9 21 186 28 0 0.1 1.497-1.501 Aira–Tn
LW2-9a 610 15 32 153 59 0 0.1 1.497-1.501 Aira–Tn
LW2-8 682 12 41 151 48 0 0.3 1.497-1.501 Aira–Tn
LW2-7 621 12 50 190 70 0 0.3 1.497-1.501 Aira–Tn
LW2-6 797 21 125 247 22 0 0.1 1.497-1.501 Aira–Tn
LW2-5 230 30 40 351 10 0 0
LW2-4 9 9 53 468 4 0 0
LW2-3 0 19 57 459 3 0 0
LW2-2 5 75 8 493 1 0 0
LW2-1 7 82 6 382 1 0 0

* Bw, bubble wall shape; Pm, pumice shape; O, other type.
† Opx, orthopyroxene; Gho, green hornblende; Cum, cummingtonite.
‡ Converted from counts per approximately 20,000 grains.
a Contains minor olivine.
b Contains abundant pale reddish-brown poorly vesiculated volcanic glass.

Table 3. Results of tephra analyses for two columnar samples from the west wall of the trench at the
Kariya site.

Sample
number

Heavy minerals
(per 3,000 grains)†

Reflective index of
volcanic glass (n )

Volcanic glass types
(per 3,000 grains)*

Identified
tephra

β quartz
(per

3,000 grains)‡
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Fig. 1. (a) Location map showing the tectonic setting and active faults in southwestern Japan. A.F.S.: active fault system. 
Yellow and magenta stars denote the mainshock epicenter of the 2016 Kumamoto earthquake (Japan Meteorological 
Agency, 2018) and the location of Aira Caldera, respectively. Background topography and bathymetry is after 
Kishimoto (1999). Active fault traces are from Nakata and Imaizumi (2002) and ERC HERP (2013a). (b) Topographic 
map showing the locations of the major active faults in central Kyushu and Aso Volcano. Active fault traces are from 
Nakata and Imaizumi (2002) and ERC HERP (2013b, 2013c). Fault names are after ERC HERP (2013c). A yellow 
star denotes the mainshock epicenter of the 2016 Kumamoto earthquake (Japan Meteorological Agency, 2018). 
Surface ruptures associated with the Kumamoto earthquake sequence are simplified from Shirahama et al. (2016) and 
Ministry of Education, Culture, Sports, Science and Technology (MEXT) and Kyushu University (2017). Black circles 
are epicenters of earthquakes (M≥2.0 with focal depths shallower than 30 km) between 14 and 30 April 2016 (Japan 
Meteorological Agency, 2018). A magenta star denotes the location of Kusasenrigahama Volcano, source of the 
Kusasenrigahama pumice (Kpfa). Isopachs of Kpfa in the dashed black rectangle are after Miyabuchi (2009). 
Topography is from the 10-m mesh digital elevation model issued by Geospatial Information Authority of Japan.
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Fig. 2. Topographic slope map showing fault traces in the eastern part of the Midorikawa fault zone. The extent of this 
map is indicated by the yellow box in Fig. 1b. Active fault traces are from Nakata and Imaizumi (2002). Active 
and inferred active fault traces are shown as solid and dashed black lines, respectively. Fault names are after 
ERC HERP (2013c). u, upthown side; d, downthrown side. Surface 1 is the depositional surface of the Aso-4 
pyroclastic flow deposits. The background slope map was created from a 1-m grid digital elevation model 
provided by the Geospatial Information Authority of Japan. Black tick marks are coordinates in meters from 
Japan Plane Rectangular Coordinate System II.
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Fig. 3. Topographic profiles across fault traces P1–P4 (see locations in Fig. 2) in the eastern part of the Midorikawa 
fault zone. v.o., vertical offset of Surface 1 across the Kamano fault. The profiles are generated from 1-m grid 
digital elevation model provided by the Geospatial Information Authority of Japan. The Kamano I and 
Kamano II faults deform Surface I, forming a narrow graben-like depression. No topographic expression 
indicates recent faulting along the Gezu fault.
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Fig. 4. (a) Survey map showing the layout of the trench and four coring points 
(blue circles) at the Kariya site. The location of this map is indicated on 
Fig. 2a. L., core length. (b) Photograph taken from the location shown in 
(a) looking south at the Kariya site. The trench crossed the c. 2 m high 
north-facing fault scarp of the Kamano II fault (red arrows).
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Fig. 7. Photographs of (a) the west wall and (b) the east wall of the trench at the Kariya site. 
Note that the photos were taken before the additional excavation on the downthrown side 
(see Figs. 5 and 6).
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Fig. 8. Photograph of the trench floor before additional excavation, showing the geometry of faults 
and deformation between grids E7 (W7) and E11 (W11). Shear fabrics and the geometry of 
Unit α filling asymmetrical spindle-shaped fissures suggest the presence of a dextral slip 
component in addition to the north-side-down normal component. f, fault surface.
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Fig. 9. Schematic cross sections showing the inferred evolution of the Kamano II fault as exposed at the Kariya site. (a) 
Our preferred interpretation with a single event occurring after the deposition of Unit 4 and (b) an alternative 
interpretation with two events occurring after the deposition of Unit 4. The alternative interpretation omits the 
“collapse and erosion” stage shown in the preferred interpretation. The ⊗ symbols indicate displacement away 
from the observer, and the ⊙ symbols indicate displacement toward the observer (i.e., dextral displacement).
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Fig. 10. Cross section across the Kamano II fault based on the trench logs and columnar sections of four 
boreholes at the Kariya site. The top of the Aso-4 pyroclastic flow deposits (~88–87 ka) is offset by 4 m 
across the fault whereas the trench documents a 2.1-m offset at shallower levels, possibly implying 
repeated faulting since the late Pleistocene. Borehole locations in Fig. 4a.
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