目次

第一章 地質

一 石炭紀前層

（二）（一）出石層

二 上部古生層

（二）（一）御荷鉄層

三 上部白堊紀層

四 新世層

五 現世層

六 更新層

七 斑岩

八 輝綠岩

自一頁至七頁

一頁

八頁

一頁

一頁

二頁

三頁

一頁

一頁

二頁

三頁

一頁

一頁

九頁

六頁

五頁

一頁

一頁

久万

地質說明書
（二）御荷鉄層

本層ハ土塩黒石ノ雲母片岩ヨリ成ツリ、緑葉泥片岩、岩灰泥岩及硅岩ノ疎層ヲ狭テ有シ。五
千メートル以上送達スル石ノ一部、ハ黒色アキサノ主ナリ、石英及石英ノ点サリ出ナリ。緑
葉泥片岩ハ出石層ノ層に対シモモル鰹状結晶構造ヲ呈ス。石灰岩ハ灰白色ヲ呈シ、変成時ノ物
理結晶ヲ含ム。
二上部古生層

粘板岩及砂岩

輝綠凝灰岩

岩石

・白色

・赤褐色

・灰白色

・灰褐色

・緑色

・灰色

・褐灰色

・黑色

・深綠色

・暗灰色

・暗褐色

・褐色

・浅灰色

・灰白色
上部白亜紀層と不整合砂岩層

砂岩
- 青灰色乃至黄灰色細粒乃至中粒ニテ主ニ石英及長石ヨリ成り
- 板岩
- 黒灰色ヲ呈シ層理明ナリ共厚サリ略砂岩ト同ナリ

三層

1. 本層ハ同層ノ北部ノ丘陵地ニ露出し其北邊ハ断層ヲ限ラテ松山平地ニ臨ミ南邊ハ同層ノ南部ヲ通リ中央大橋ヲ接トスノモ断層ヲ通リ不整合ノモ断層ヲ通リ不整合ノモ

2. 中新層ニ接トスノモ断層ヲ通リ不整合ノモ断層ヲ通リ不整合ノモ

3. 高層第ニ部ハ東方ニ延シテ信川ノ平地ト共南部ノ丘陵トノ間ヲ接トスノモ断層ヲ通リ不整合ノモ

四層

1. 堆積層

2. 砂岩層

3. 螻岩

4. 砂岩層及び凝灰岩

5. 板岩

6. 砂岩層

7. 板岩層

8. 砂岩層

9. 砂岩層

10. 砂岩層

11. 砂岩層
更新層

粘土、砂及び礫

中層

粘土、砂及び礫

六・現代層

桜川に沿った海岸及び沿岸部を分布。
岩石
暗緑色
常成分
本岩は結晶片岩中二岩

八輝緑岩

九
蛇紋岩

十一
斜方輝石安山岩

十
石英粗面岩

岩母
大角長石
蜻蜓石
長石

石英
黑雲母
輝石

岩浆岩

岩石

二、岩漿岩

长石

三、侵入岩

长石

四、岩浆岩

长石

五、玄武岩

长石

六、安山岩

长石

七、辉绿岩

长石

八、辉长岩

长石

九、角闪岩

长石

十、闪长岩

长石

十一、片麻岩

长石

十二、花岗岩

长石

十三、片麻岩

长石

十四、片麻岩
十五
流状角岩

十六
火成岩相互関係

第二章
適用地質

一 鍛鍊

廣田鎧山

位置及沿革

分界線

伊豆群上瀧村上瀧

朝東北東走之大橋線

中央大橋線

下之大橋線

沿之大橋線

朝東北東走之大橋

岩山

地質
<table>
<thead>
<tr>
<th>序号</th>
<th>姓名</th>
<th>年龄</th>
<th>性别</th>
<th>职业</th>
<th>详细信息</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>张三</td>
<td>23</td>
<td>男</td>
<td>工程师</td>
<td>正在从事建筑设计工作，拥有5年相关工作经验。</td>
</tr>
<tr>
<td>2</td>
<td>李四</td>
<td>28</td>
<td>女</td>
<td>教师</td>
<td>担任小学数学老师，有丰富的教学经验。</td>
</tr>
<tr>
<td>3</td>
<td>王五</td>
<td>31</td>
<td>男</td>
<td>医生</td>
<td>在本地医院担任内科医生，擅长心血管疾病治疗。</td>
</tr>
<tr>
<td>4</td>
<td>赵六</td>
<td>25</td>
<td>女</td>
<td>律师</td>
<td>拥有5年律师工作经验，擅长知识产权法。</td>
</tr>
<tr>
<td>5</td>
<td>孙七</td>
<td>22</td>
<td>男</td>
<td>学生</td>
<td>在读研究生，研究方向为计算机科学。</td>
</tr>
</tbody>
</table>

注：以上信息仅供参考。
三
建築石材材及石灰岩

陶石

伊豫郡上灘村及礦物部材於印風化セル圃面岩質山岩ヲ採取シ砥砕ノ後ノ如ク...

石トナマ本陶石ノ関シテハ本所工料原料用調査報告後十四號ニ詳細ナル記載アル...

...省略...
<table>
<thead>
<tr>
<th>中文内容</th>
<th>中文内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>详细信息</td>
<td>详细信息</td>
</tr>
<tr>
<td>参考文献</td>
<td>参考文献</td>
</tr>
<tr>
<td>表格1</td>
<td>表格1</td>
</tr>
<tr>
<td>图1</td>
<td>图1</td>
</tr>
</tbody>
</table>

注：表格和图需要根据实际情况填写。
EXPLANATORY TEXT
OF THE
GEOLOGICAL MAP OF JAPAN
Scale 1:75,000

KUMA
Zone 32 Col. XIX
Sheet 245

by
Hokoto Sato.

Geology

Pre-Carboniferous. "Izushi Series". This is mainly composed of green schists intercalated with graphite schist, hematite-quartz schist and spotted sericite schist. The green schists comprise epidote-chlorite schist, spotted chlorite schist, epidote-amphibole schist and spotted amphibole schist, but they show a gradual transition among one another. The formation has a general strike running nearly east-west, being folded in a complicated manner.

"Mikabu Series". This consists chiefly of graphite schist with thin beds of epidote-chlorite schist, crystalline limestone and quartzite between. The general strike of the formation is nearly same as that of "Izushi Series", and the two formations seem to be conformable with each other. According to the field observation, the "Mikabu Series" is apparently overlaid by the "Izushi Series", which is believed to be older than the former, such a structure is considered probably to have been produced by the overturning of the strata.
Upper Palaeozoic. This is composed of clay slate, sandstone, schist, quartzite and limestone, with the general strike running N 70° E and the dip 45° S. No fossil has been discovered in this formation so that its geological age is still uncertain, but from its lithological character as well as from its stratigraphical relation, it seems to belong to the Upper Palaeozoic—probably Permian.

Upper Cretaceous ("Izumi Sandstone"). This consists of the alternation of sandstone and shale. The general strike is east-west and the dip 20°-50° N.

Miocene. A bed of conglomerate, about 300 m. thick, forms the base of the formation, resting directly upon the crystalline schists. Above this conglomerate, there is a series composed of sandstone, shale and volcanic tuff conformably overlying it. The thickness is estimated to be about 200 m. The dip is generally gentle, though the strike is variable. In several localities fossil plants such as Araliaphyllum namamnni Nuth., Juglans acuminata A. Brawn, etc., are found in the sandstone.

Pliocene and Recent. These consist of clay, sand and gravel, and found along rivers and coasts.

In this sheet-map area have been recognized several great tectonic lines, most of which run from WSW to ENE. Of these, the most important lies along the boundary between the Upper Cretaceous and Crystalline schists. This forms a part of the great median dislocation line which divides Japan into two zones—Inner and Outer. These tectonic lines seem to have been formed by the orogenic movement which began as early as the beginning of the Mesozoic age and continued to the end of the Tertiary. Following to the above mentioned crustal movement, gabbro, diabase, liperite, rhombic-pyroxene andesite and biotite andesite have successively intruded into or erupted over pre-existing formations forming dykes or surface flows. Rhombic-pyroxene andesite, sanukite, biotite andesite, and trachytoid andesite are the differentiation-products of the same magma.

Economic Geology

Copper ore. The Hirota mine is situated about 24 km. to the south of Morimatsu. The deposit belongs to the bed-form metamorphic type, occurring in the chlorite schist of the "Izushi Series". The ore is a cupriferous pyrite, massive or banded. Three lenticular ore bodies of a massive structure are found to occur closely beneath the bed-form ore body, chiefly composed of the banded ore. The general strike of the deposit is NW., and the pitch is toward NE., with the inclination of 20° or more. The thickness of the workable part of the banded ore body varies from 0.6 m. to 2 m., containing about 3% of copper. The massive ore is generally poor in copper content, being worked as a sulphur ore.

Porcelain stone. A decomposed trachytoid andesite furnishes material for porcelain manufacture in the vicinity of Tobe-mura, Iyo-gun.

Building stone and whetstone. Biotite andesite is quarried for building stone at Kaminada-mura, Iyo-gun, and decomposed same rock is used for whetstone at Tobe-mura.

Limestone. At several places, limestone is quarried for agricultural purposes.