昭和六年二月

甲浦

地質調査所

地質説明書

圖編第三十四號
第二章
適用地質

第一章 地質

一 珠羅層安藝川層

頁岩
緑色ヲ呈スルモノシノ多ク灰青色へ黒色ノモノニ二ツテ繊密ニシテ堅硬ナリノラノ様
砂質ナルモノシハ板状ヲ成シ板状ニ分離スルモノヲアリモクノ小片ヲ破砕ス

二 珠羅層安藝川層

頁岩層
緑色ヲ呈スルモノハメ泥石ノ含有ス

三 珠羅層安藝川層

頁岩層
緑色ヲ呈スルモノハメ泥石ノ含有ス

チャート
緑色ヲ呈スノ赤色ヲ呈スノ普通ハ石英粒ヲ成スルノ時ノ細片微粒ヲ粘土質ハ含有ス

甲府採原ノ三賀ノ比山

四 建築石材

頁岩層

二 珠羅層安藝川層

頁岩層
緑色ヲ呈スルモノハメ泥石ノ含有ス

三 珠羅層安藝川層

頁岩層
緑色ヲ呈スルモノハメ泥石ノ含有ス

四 建築石材

頁岩層
緑色ヲ呈スルモノハメ泥石ノ含有ス
砂岩
灰色或暗灰色ニシテ細粒ノ石英長石雲母磁鐵石及細粒粘土質物ヨリ成ル

(二) 砂岩頁岩五層
砂岩
灰色時ニ緑色ヲ呈シ細粒ノ石英長石雲母磁鐵石成り五々乃至二種ノ角従

二十数米ニ達シ

頁岩
灰色又ハ暗灰色ニ呈シ磁鐵石及粘土質物ノ混在ヨリ成りノ層ノ厚サリ一乃至五ナリ

(三) 砂岩頁岩層
砂岩
灰色時ニ緑色ヲ呈シ磁鐵石及粘土質物ノ混在ヨリ成りノ層ノ厚サラ一乃至五ナリ

頁岩
粘土質物ヲ含マ熱帯ナル変成ヲ受ケタル層ノ厚サラ一乃至十数米ニ達シ

本層ハ千本川上流ニ於テノ厚サ二千五百米アリ主トシテ砂岩頁岩ノ五層ヨリ成ル

野根川上流・戸山及西ヶ峰ニ於ケル変成変質ノ薄ニ及ボリ
奈半利川層

（一）砂岩層

奈半利川層は主に、砂岩、灰色の厚い層を含んでおり、特に、厚さが50メートルから60メートルのものが見られる。層の走向は東西方向で、傾斜率は約45度である。室戸層下に分布し、一部は厚さが300メートルを超えるものもある。

（二）頁岩層

頁岩層は、層厚が20メートルから300メートルと幅広く、特に、層厚が300メートルを超えるものを多く見られる。層の走向は東西方向で、傾斜率は約45度である。室戸層下に分布し、一部は厚さが300メートルを超えるものもある。
支柱夫
一
四十点五

抗
九人二十四

工作夫
一人
二十一

抗内難夫
一人
二十八

手
七人

子
八十五

鎌石年産額八人表ノ如シ

安屋母尼毬

一
近ノ岩層ハ一般ノ北方類礫ナルニ反シ本地ニフハ南方ノ傾斜地層錯乱セリ

床ノ交代礫層ニ属シ礫泥石化作用シテ石英及方解石沈澱等ニ順序に向形成セリ

ノ第ト云フモ退団當時ハ採取セルモノナリ聞き処ニフハ安屋母尼毬礫層ノ礫泥岩ノ礫泥岩ノ化石ハセリ

ノFig.18x18 to 809x577

ノFig.18x18 to 809x577
EXPLANATORY TEXT
OF THE
GEOLOGICAL MAP OF JAPAN
SCALE 1 : 75,000

KANNOURA
Zone 32 Col. XVI
Sheet 242
By
Tatsuo Suzuki

(Abstract)

GEOLOGY

Akigawa Series. This Series is composed of shale, sandstone, conglomerate and chert. Lithologically it may be divided into three zones, viz. the lower or shale zone, the middle or zone of sandstone and shale, and the upper or zone of shale and sandstone. The general strike of the rock-layers is east-west with dip 40°-80° to north. No fossils were found except some spicules of radiolaria in the chert which do not tell the geological age of the Series. Accordingly it will be taken for Jurassic after Dr. Yehara.

Muroto Series. The upper part of the Muroto Series found in the southeastern part of the sheet area is composed of shale and sandstone, and may be identified with the upper part of the Akigawa Series on account of the resemblance of its constituent rocks. The general strike is east-west,
dipping to north with the angles of 40°-80°. The Series, which is in juxtaposition with the Naharigawa Series, is separated from it by a fault line running nearly parallel to the strike.

Naharigawa Series. This Series is chiefly composed of sandstone and shale, and characterized by a fine banded structure of these rocks. The strike at Kannoura is east-west, but near Umaji it gradually changes to north 50° east with the dip of 40°-80° to north. Its geological age is uncertain, being destitute of fossils. However, it may be regarded from the nature of rocks to belong to the Lower Tertiary or Upper Mesozoic.

Pleistocene and Recent. These are composed of gravel, sand and clay, and found along rivers and sea-coast. The Pleistocene forms terraces 10-30 metres high along the rivers Nahari and Kaifu, while the terraces of the sea-coast attain the height of 15 metres.

ECONOMIC GEOLOGY

Copper Ore. The Asakawa mine is situated in a valley near the village of Asakawa, Kaifu-gun. The ore occurs in the shale zone of the Akiyama Series, forming four lenticular masses which are connected with one another by strings of clay. The general strike of the ore body is east-west with dip 60° to south. The largest mass of the ore body is about 35 metres in stope; 55 metres in vertical distance and 24 metres in thickness.

The ore is found within a tuffaceous shale which is chloritized and silicified by the mineralization in the early stages. The chief components of the ore are copper and iron pyrites, associated with bornite and cuprite. Calcite, chlorite and quartz occur as the gangue minerals, the quartz being deposited first and calcite last, while the chloritization went on all the time. The ferruginous chert is sometimes metamorphosed into hematite by mineralization. As to the cause of the mineralization, nothing is known as there is no igneous rock in the neighbourhood of the mine. The average content of copper is 5.0% and its output 387,200 "kwan" in 1925.

Antimony Ore. The ore was actively mined at Shiokiyama, years ago. The prospection was recently undertaken in the neighbourhood of the old mine.

Potter's Clay. This occurs at Wakamatsu in the Pleistocene bed, and also at Shiba and Hibi in the Recent. It is used for making roofing tiles.

Building Stone. The sandstone of the Naharigawa Series is quarried at Oshima and Shishikui as a building stone. It is only for local use.