昭和二年十月

伊良湖岬
地質調査所

地質調査所
<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
五

古更新層

六

新更新層

新更新層

上部鮮新層

不整合

被覆シテ

図幅地

布ス

東

高距約

三

米内外

及び

外

三

米内外

内

層

部

検

砂礫

及び

粘土

コリ

成り

特

黑色

ソ

砂礫

及

風化

セ

ル

體

成り

其

上

層

セ

ル

外

雲

滑

石

英

面

岩

含有

其

面

平

ノ

それに

岩

粘土

粘土

風化

セ

ル

體

成り

特

黑色

ソ

砂礫

及

風化

セ

ル

體

成り

其

上

層

セ

ル

時

外

雲

滑

石

英

面

岩

含有

其

面

平

ノ

それ
九片状閃雲花崗岩

如本層～白雲母含有量の等に、少々に平均化して、かつ、内部構造を示す。その岩相は、正長石を含む岩石である。

岩相～灰色ラ呈シャラ形を示す。

主成分～石英、正長石、斜長石。

二階層～産状、風化状、変化状。

石英～等長または短長、単斜状。

花崗岩～石英、長石、輝石、変成等。

閃雲花崗岩～閃雲、長石、輝石、変成等。

以外は、変成石英、輝石、長石等を含む。
十三.

蛇紋岩

岩石：帶青綠色、黑色、灰色、細粒長石雲母花崗岩。

主要成分：蛇紋石、長石、雲母。

副成分：磁鐵礦、銅礦。

十四.

火成岩相相互關係

岩石：帶青綠色、黑色、灰色、細粒長石雲母花崗岩。

主要成分：蛇紋石、長石、雲母。

副成分：磁鐵礦、銅礦。

十四.

火成岩相相互關係

岩石：帶青綠色、黑色、灰色、細粒長石雲母花崗岩。

主要成分：蛇紋石、長石、雲母。

副成分：磁鐵礦、銅礦。
<table>
<thead>
<tr>
<th>地名</th>
<th>産状</th>
<th>産地</th>
<th>産期</th>
<th>産出</th>
<th>石灰岩</th>
<th>産出</th>
<th>小工事用石灰</th>
<th>産地</th>
<th>産期</th>
<th>産出</th>
<th>石灰岩</th>
<th>産出</th>
</tr>
</thead>
<tbody>
<tr>
<td>甲府市</td>
<td>片山</td>
<td>甲府市</td>
<td>秋</td>
<td>上</td>
<td>灰色</td>
<td>灰色</td>
<td>灰色</td>
<td>灰色</td>
<td>灰色</td>
<td>灰色</td>
<td>灰色</td>
<td>灰色</td>
</tr>
<tr>
<td>甲府市</td>
<td>阿波</td>
<td>甲府市</td>
<td>春</td>
<td>上</td>
<td>灰色</td>
<td>灰色</td>
<td>灰色</td>
<td>灰色</td>
<td>灰色</td>
<td>灰色</td>
<td>灰色</td>
<td>灰色</td>
</tr>
<tr>
<td>甲府市</td>
<td>藤本</td>
<td>甲府市</td>
<td>秋</td>
<td>上</td>
<td>灰色</td>
<td>灰色</td>
<td>灰色</td>
<td>灰色</td>
<td>灰色</td>
<td>灰色</td>
<td>灰色</td>
<td>灰色</td>
</tr>
<tr>
<td>甲府市</td>
<td>田原</td>
<td>甲府市</td>
<td>春</td>
<td>上</td>
<td>灰色</td>
<td>灰色</td>
<td>灰色</td>
<td>灰色</td>
<td>灰色</td>
<td>灰色</td>
<td>灰色</td>
<td>灰色</td>
</tr>
</tbody>
</table>

注: 本表显示了不同产区的石灰岩产状、产期及产量等信息。
EXPLANATORY TEXT
OF THE
GEOLOGICAL MAP OF JAPAN
Scale 1 : 75,000

IRAKOZAKI
Zone 28 Col. X
Sheet 179
By
Kiyohiko Ishii

Geology

Mikabu Series. The Mikabu Series comprises alternating beds of various rocks such as chlorite-phylite, graphite-phylite and quartz-graphite-phylite with epidote-tremolite-fels and metamorphosed schistose sandstone, rarely accompanying lenticular limestone and quartzite. The banded structure of these rocks is not so perfect as that of the rocks belonging to the same series in the Toyohashi Sheet. This series is found in a small area along a great fault, supposed to occur between the series and the Upper Palaeozoic Formation. The strata strike almost due east and west, dipping 25°-80° either to north or south and showing complicated foldings.

Upper Palaeozoic. The Upper Palaeozoic Formation is made up essentially of hornstone intercalating several layers of sandstone, clay slate, limestone, quartzite and schalmstein. In general, the strata strike nearly east to west with dips of 20°-80°.
places, as to be broken up into many blocks by faults of different dimensions. No fossils are found in the Formation, but from lithological characters, it is conjectured to belong to the Permo-Carboniferous.

Lower Pliocene. The Lower Pliocene in the sheet is represented by alternating beds of several kinds of sandstone, shale and tuff. The thickness of each layer of these rocks is in most cases less than 10 metres, though the total thickness of the series has not been measured. In the tuff, many sand nodules, sometimes containing molluscan fossils, are found. In extent the series is limited to the areas of the two small islands of Saku and Himaka. The dip is small, being in general 5°-20°, and the strata form a syncline, with the axis running nearly east to west in the eastern portion but westwardly turning to WSW. This series is closely allied to the Lower Pliocene in the Tajimi Sheet.

Upper Pliocene. The Upper Pliocene composed of gravel, sand and clay, forms a hilly land covering a vast area in the Atsumi Peninsula. The strata are nearly horizontal. The gravel and clay, stratified near the foot of the cliff on the southern coast, contain many fossils of molluscs and foraminifera. Of the specimens collected at Tonami and Ikobe, Dr. Yokoyama determined 21 species of gastropod and 27 species of lamelli-branchiata. From these fossils, the series was regarded by him as an equivalent of the Lower Musashino Series.

Older Pleistocene. The Older Pleistocene covering unconformably the Upper Pliocene forms a gently sloping plateau rising 80-100 metres above sea level. It consists mostly of angular or subangular gravels.

Younger Pleistocene. The Younger Pleistocene, which seems to cover the Older Pleistocene in unconformable relation, is found in three stepping terraces attaining heights of 10, 20, and 30 metres respectively above sea level. It comprises gravel, sand and clay.

Recent. This forms alluvial plains along the banks of rivers, also sand-dunes found near the western extremity of the sheet, and sand-bars developing at several places on the northern coast of the Peninsula.

Biotite-granite. This rock is grayish-white in colour, fine-grained, and normally granitic in texture, including muscovite as an accessory. It is closely allied to the two-mica-granite in the Toyohashi Sheet.

Schistose hornblende-biotite-granite. This rock is gray in colour, and medium or coarse grained in texture with distinct schistosity. The essential components such as quartz, feldspar, hornblende, and biotite are separated into two phases, namely, pseudo-phencocryst and pseudo-groundmass. Quartz is especially dominant in the pseudo-groundmass. The rock is identical with the schistose granite in the Toyohashi Sheet, and is penetrated by the biotite-granite.

Olivine-gabbro. This is black in colour, and fine or medium grained and allotriomorphic granular in texture. The rock is composed chiefly of plagioclase, pyroxene and olivine. It passes locally into the allied rock as pyroxenite or peridotite, and shows a very heterogeneous crystallization differentiation. It is found in patches along the fault line supposed to exist between the Mikabu Series and the Upper Palaeozoic Formation, and appears to have been erupted along the fault.

Picrite. This rock resembles the olivine-gabbro in macroscopic appearance, and is composed chiefly of olivine and pyroxene with plagioclase of local occurrence. It forms a mass commingled with the fine-grained and more basic variety, while it accom-
Pyroxene-peridotite. This is deep black and fine grained, and is composed essentially of olivine with some interstitial crystals of pyroxene.

Peridotite and pyroxene-peridotite seem to have been derived from the same magma which also bears a close relation to that of olivine-gabbro.

Serpentinization, saussuritization and uralitization prevail throughout the entire mass of these basic and ultra-basic rocks.

The serpentine in the sheet area is of an alteration product from the olivine-gabbro or ultra-basic rocks mentioned above.

Economic Geology

Limestone. Limestone is quarried for the manufacture of lime. This rock is intercalated in the beds of hornstone together with schiststein, and attains a thickness of about 100 metres. The production in 1924 was about 1245 metric tons as lime and 41,000 barrels as portland-cement.