地域地質研究報告

5万分の1地質図幅

岡山(12)第25・26号

NI-53-32-5 • 9

石見大田及び大浦地域の地質

鹿野和彦・松浦浩久・沢田順弘・竹内圭史

平成 10 年

地質調查所

5万分の1地質図幅索引図 Index of the Geological Map of Japan 1:50,000

		¹²⁻¹⁵ 大社 Taisha NI-53-31-8 (1989)	12-16 今市 Imaichi NI-53-31-4 (1991)
	12-25·26 石 Iv	見大田及び大浦 vami-Ōda & Ōura NI-53-32-5·9 (1998)	12-27 木次 Kisuki NI-53-32-1 (未刊行, unpublished)
12-37 温泉津 Yunotsu NI-53-32- (未刊行, unpub	10 lished)	¹²⁻³⁸ 三瓶山 Sambesan NI-53-32-6 (1983)	12-39 頓原 Tombara NI-53-32-2 (未刊行, unpublished)

目 次

I. 地 形	爹) 2
Ⅱ. 地質概説	史) 4
Ⅱ.1 後期白亜紀 - 古第三紀火成岩類	5
Ⅱ.2 新第三系	8
Ⅱ.3 第四系	14
Ⅲ. 後期白亜紀-古第三紀火成岩類	21
Ⅲ.1 佐津目火山岩類	21
Ⅲ.2 野城花崗岩	22
Ⅲ.3 八神火山岩類	23
Ⅲ.4 石見花崗岩	25
Ⅲ.5 岩脈	27
Ⅲ.5.1 花崗閃緑斑岩	27
Ⅲ.5.2 石英斑岩及びアプライト	27
Ⅲ.5.3 マイクロダイオライト	28
Ⅳ. 新第三系	28
Ⅳ.1 波多層 ·······(鹿野和彦・沢田順弘	a) 29
Ⅳ.2 川合層	a) 31
Ⅳ.3 久利層	a) 36
Ⅳ.4 大森層	a) 39
Ⅳ.5 布志名層 ····································	<u>1)</u> 56
Ⅳ.6 神西層 ······(鹿野和彦	66 (ءَ
Ⅳ.7 貫入岩 ·······(鹿野和彦・沢田順弘	a) 70
V. 第四系 (鹿野和彦	ءُ) 71
V.1 都野津層群 ·····	71
V.2 中位1段丘堆積物 ·····	72
Ⅴ.3 中位Ⅱ段丘堆積物	72
V.4 古期扇状地堆積物 ·····	72
Ⅴ.5 差海層	72
V.6 三瓶火砕流堆積物 ······	74
V.7 低位段丘堆積物 ·····	79
V.8 多根火砕流堆積物 ······	80
V.9 中海層	83
Ⅴ.10 砂州及び海岸砂丘堆積物	90

V.11 三角州,扇状地及び河川堆積物		90
Ⅵ. 埋立地	(鹿野和彦)	91
Ⅶ. 地質構造	(鹿野和彦)	92
Ⅶ. 活断層,リニアメント及び地震活動	(鹿野和彦)	94
IX. 応用地質 ······	(鹿野和彦)	96
IX.1 金属鉱床 ······		96
IX.2 非金属鉱床 ······		98
Ⅲ.3 石材及び骨材		99
Ⅳ.4 地すべり及び山崩れ		99
区.5 温泉		99
文 献		101
Abstract		114

図・表目次

第1図	山陰地方の地形	•• 3
第2図	石見大田及び大浦地域の地形	•• 4
第3図	山陰地方中部の地質図	•• 6
第4図	佐津目火山岩類流紋岩溶結凝灰岩の顕微鏡写真・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	22
第5図	野城花崗岩の中粒白雲母含有黒雲母花崗岩及び文象斑岩の顕微鏡写真	24
第6図	花崗閃緑斑岩岩脈の顕微鏡写真	28
第7図	石見大田地域東部の新第三紀火山岩の化学組成変化図	30
第8図	川合層の砂岩礫岩	32
第9図	川合層の安山岩溶岩火砕岩柱状図	33
第10図	川合層安山岩溶岩直上の塊状安山岩火山角礫岩	36
第11図	久利層の安山岩シル	37
第12図	久利層流紋岩火砕岩及び安山岩火砕岩柱状図	38
第13図	久利層流紋岩火砕岩の産状	40
第14図	久利層流紋岩軽石火山礫凝灰岩中のジグソー割れ目が明瞭な軽石岩塊	41
第15図	大森層安山岩 - デイサイト溶岩及びこれと指交する火砕岩,砂岩礫岩の柱状図 …	43
第16図	大森層安山岩溶岩の産状	44
第17図	大森層安山岩溶岩の柱状節理	45
第18図	大森層安山岩溶岩末端部の割れ目と柱状節理	46
第19図	大森層中の安山岩岩脈と母岩の流動化	48
第20図	大森層中の波打つ安山岩シルの上面と母岩の変形	48
第21図	大森層安山岩 - デイサイト火山礫凝灰岩 - 凝灰岩の柱状図	49

第 22 図	大森層安山岩 - デイサイト火山礫凝灰岩 - 凝灰岩の産状	50
第23図	大森層安山岩溶岩直上の礫岩	51
第24図	大森層の安山岩石質火山礫凝灰岩 - 凝灰岩の産状	52
第25図	大森層安山岩スコリア - 軽石火山礫凝灰岩 - 凝灰岩及び軽石火山礫凝灰岩 - 凝灰岩の	
	柱状図	53
第26図	大森層安山岩スコリア - 軽石火山礫凝灰岩 - 凝灰岩がなす平行層理 - 低角斜交層理	54
第27図	大森層安山岩スコリア - 軽石火山礫凝灰岩中のガス抜けパイプと本質岩塊	55
第28図	大森層安山岩スコリア - 軽石火山礫凝灰岩 - 凝灰岩中の軽石岩塊	56
第 29 図	大森層安山岩軽石火山礫凝灰岩 - 凝灰岩中の炭化木	57
第30図	大森層安山岩軽石火山礫凝灰岩 - 凝灰岩中の脱ガス構造の縦断面	58
第31図	大森層安山岩軽石火山礫凝灰岩 - 凝灰岩中の脱ガス構造の横断面	59
第 32 図	大森層砂岩中の生痕化石	60
第33図	大森層礫岩砂岩の産状	61
第34図	大森層砂岩の産状	61
第35図	大森層礫岩卓越相の間に挟在する砂岩卓越相の柱状図	62
第36図	布志名層の柱状図	63
第37図	布志名層砂岩のハンモック斜交層理	64
第38図	布志名層極細粒砂岩を挟むシルト岩とそれに重なる極細粒砂岩	65
第 39 図	神西層砂岩の堆積構造と生痕	67
第 40 図	出雲市西神西町付近の地質図及び地質断面図	68
第41図	神西玄武岩火山礫岩 - 凝灰岩互層	69
第 42 図	差海層の柱状図	74
第43図	差海層基底付近の砂礫層	75
第44図	三瓶火砕流堆積物柱状図	76
第45図	三瓶火砕流堆積物及び多根火砕流堆積物の粒度加積残留曲線	77
第46図	三瓶火砕流堆積物及び多根火砕流堆積物の平均粒径 M φ と	
	幾何学的分散 σ_{ϕ} との関係 ······	77
第 47 図	三瓶火砕流堆積物中の炭化木とガス抜けパイプ	78
第48図	三瓶火砕流堆積物主部の成層構造	79
第49図	三瓶火砕流堆積物最上部の級化成層構造	80
第 50 図	三瓶火砕流堆積物中の細粒火山灰に取り囲まれた類質岩塊	81
第51図	三瓶火砕流堆積物中の泥岩岩片	81
第52図	三瓶火砕流堆積物中上部の荷重による塑性変形	82
第 53 図	多根火砕流堆積物の柱状図	83
第54図	多根火砕流堆積物の産状	84
第 55 図	多根火砕流堆積物中のデイサイト岩塊とその基質	85

第56図	神西湖、多伎町及び周辺地域における第四紀層を貫くボーリングの位置と	
	完新統基底等深線	86
第 57 図	神西湖,多伎町及び周辺地域のボーリング柱状図	87
第58図	大田市久手町、大田市街及び周辺地域における第四紀層を貫くボーリングの位置と	
	完新統基底等深線	88
第59図	大田市久手町,大田市街及び周辺地域のボーリング柱状図	89
第60図	波根湖ボーリング位置図	91
第61図	波根湖ボーリング柱状図	92
第62図	波根湖の古地理の変遷	93
第63図	20万分の1 「浜田」地域内の震源分布図	95
第64図	温泉ボーリング地質柱状図	100
第1表	石見大田及び大浦地域の地質総括表	•• 7
第2表	出雲市及び周辺地域の中新統層序の変遷	10
第3表	大田市及び周辺地域の中新統層序の変遷	11
第4表	宍道低地帯及び石見大田及び大浦地域の第四系層序区分	15
第5表	三瓶火山噴出物層序の変遷と三瓶火山活動史	20
第6表	石見花崗岩のフィッショントラック年代測定結果	27
第7表	波多層柄栗デイサイト層のフィッショントラック年代測定結果	31
第8表	石見大田地域東部の新第三紀火山岩の岩石記載,化学分析値	
	及びK-Ar 全岩年代測定値	34
第9表	石見大田及び大浦地域の温泉一覧	99
Table 1 S	Summary of the geology of the Iwami-Oda and Oura districts	115

(平成9年稿)

地域地質研究報告 5万分の1地質図幅 岡山(12) 第 25・26号

石見大田及び大浦地域の地質

鹿野和彦*·松浦浩久*·沢田順弘**·竹内圭史*

本研究報告は、地震予知研究の上で緊急性があり、かつ、重要な地域として指定された特定観測地域 ハヶ所の一つ「島根県東部」に位置する「石見大田」地域及び「大浦」地域の地質に関する記述である. 「石見大田」地域及び「大浦」地域は国土地理院の5万分の1地形図の区画を異にするが、本報告では、 利用し易さを考慮して、「石見大田」地域と、その西隣の、陸域が狭い「大浦」地域とを一括して「石 見大田及び大浦」地域としてその地質を記述することにした.「石見大田及び大浦」地域にかかる地方 自治体は、出雲市、簸川郡多伎町、同湖陵町、同佐田町、飯石郡頓原町、大田市、遼摩郡仁摩町の2 市5町である.

現地調査は平成6-8年度に実施した.新第三系の調査は、鹿野、沢田、竹内が、先新第三系の調査は 松浦が行い、全体のとりまとめを鹿野と松浦が行った.とりまとめにあたっては、島根大学の山内靖喜教 授に新第三系の岩相層序について議論していただいた.また、波根湖の地下地質について、島根大学の徳 岡隆夫教授から、有孔虫ならびに貝化石については、島根大学の野村律夫教授と筑波大学の小笠原憲四郎 教授からご教示いただいた.多伎町、湖陵町、佐田町及び出雲市からは多伎いちじく温泉、湖陵温泉、須 佐温泉、出雲平成温泉の資料を提供していただいた.

地質図の等重力線は、地殻物理部駒澤正夫主任研究官及び上嶋正人研究調査官が編集した.編集の詳細と重力異常の解釈については、別途地質調査所月報に掲載される予定である.薄片作成は、地質標本 館の佐藤芳冶(退職)、野神貴嗣、大和田朗技官及び北海道支所の佐藤卓見技官による.地質調査所の宇 都浩三主任研究官、並びに沢田順弘の共同研究者である岡山理科大学の板谷徹丸教授には未公表の化学 分析値と K-Ar 年代測定値を本報告に掲載することを了承していただいた.ただし、読者には資料提供 者の了解なしにそれらの値を引用しないようお願いする.

^{*} 地質部,** 島根大学総合理工学部地球資源環境学科

Keywords: Geological map of Japan 1:50,000, Late Cretaceous, Paleogene, Neogene, Quaternary, Satsume Volcanic Rocks, Nojiro Granite, Hakami Volcanic Rocks, Ijimi Granite, Hata Formation, Kawai Formation, Kuri Formation, Omori Formation, Fujina Formation, Jinzai Formation, Tsunozu Group, Middle terrace deposits, Older fan deposits, Sashimi Formation, Sambe pyroclastic flow deposit, Lower terrace deposits, Tane pyroclastic flow deposit, Nakaumi Formation, Coastal sand dune deposits, Sand bar deposits, Delta, fan, fluvial deposits, Sambe volcano

I. 地 形

(鹿野和彦)

¹¹² 着見大田及び大浦地域は北緯35度10分-35度20分,東経32度15分-132度45分の範囲にあり, 山陰中部に位置する(第1図及び第2図). 石見大田地域とその西隣の大浦地域との境界は,東経132度 30分である. 両地域とも日本海に面しており,大田市大浦から多夜町小田にかけて西南西-東北東方 向に直線的に延びる海岸には中新世の火山岩や堆積岩が露出する海食崖が連なる. この海食崖は,様々 な程度に海食されており,海食が進んだ入り江には湾頭砂州と後背湿地が生じている. 大田市静間町魚 ² 湾西方の静之 窟 は火砕岩のなす崖が海食されて生じた洞窟の一つで,古代人が住居にしていたといわ れている. 大田市静間町から鳥井町にかけての地域と,その北側の久手町は,かつての入り江または海 跡湖が埋積された低湿地である. 静間町付近の低湿地は,静間川とその支流である三瓶川とが運ぶ砕屑 物によって埋積され,鳥井町の低湿地は砂丘によって埋積されている. 久手町の低湿地には,最近まで 海跡湖(波根湖)が残っていたが,第二次世界大戦直後に始まった干拓事業によって埋め立てられた. こ れら二つの低地は,現在, 三瓶山から三瓶川と静間川に沿って流下し海に流れ込んだ三瓶火砕流堆積物 がなす火砕流台地によって隔てられている.大田市の市街地はこの火砕流台地とこれが開析されて生じ た低地にある.

大浦から続いた岩石海岸は小田で終わる.小田から先の海岸は,島根半島と中国山地との間に東西お よそ40kmにわたって続く低地-宍道低地帯の西端をなす砂浜と砂丘となり,向きを北に変えて湾曲し ながら島根半島南側の大社へと続く.砂丘は更新世の差海層(古い海岸砂丘堆積物など)を覆って海岸か ら2,3km内陸まで広がり,その背後に,神西湖,蓮池,蛇池など,内湾が湾頭砂州によって閉鎖され てできた海跡湖が点在する.

中国山地の北縁にあたる内陸は、後期白亜紀-古第三紀の珪長質深成岩類とそれらに貫かれ熱変成を 受けた火山岩類の織りなす起伏の少ない山地となっており、隆起準平原の様相を呈する.しかし、石見 大田地域の東南部と西南部では後期白亜紀ないし古第三紀の火成岩類に割り込んで、あるいはそれらを 覆って中新世の火山岩類や堆積岩類が分布しており、火山岩類のなす高まりによって起伏が増幅されて いる.

石見大田地域の南方の内陸部から流れ下ってくる神戸川は,この周辺では斐辺川に次ぐ大きな川であ る. 石見大田地域東南部の中新世火山岩類の間を縫って流れる波多川や須佐川,三瓶山に源を発し,そ れ以前の火成岩類の間を縫って流れる伊佐川,などの支流を集めて宍道低地帯に流れ込み,差海と大社 との間の砂丘を通って日本海に注ぐ.名勝立久恵峡は,中期中新世前期の大森層の安山岩ないしデイサ

-2 -

第1図 山陰地方の地形 国土地理院の50万分の1地方図「中国四国」の…部を使用

| 3

第2図 石見大田及び大浦地域の地形 国土地理院の20万分の1地勢図「浜田」の一部を使用

イト溶岩が浸食されてできた神戸川中流の渓谷である.

神西湖の南側に面した湖陵町三部には比高10-20mと比高5-10mの段丘(中位 I 段丘と中位 I 段丘)が,海岸砂丘の南端にあたる多伎町小田にはほぼ同じ頃に形成された古い砂丘や扇状地が分布す る.古い砂丘は現在の砂丘よりも高い面をなしてほぼ同じ位置に分布しており,しばしば現在の砂丘の 頂部に顔をのぞかせている.神戸川に沿っては,比高10-20mの低位段丘と比高20-30mの中位 II 段 丘が佐西町窪白や出雲市乙立町に,また,静間川に沿っては,比高10mの低位段丘が大田市久利町に わずかに分布する.

Ⅱ. 地質概説

(鹿野和彦・松浦浩久・沢田順弘・竹内圭史)

石見大田及び大浦地域には、南隣の三瓶山地域から連なる後期白亜紀-古第三紀火成岩類をとりまい

て新第三系が分布し、日本海に沿って第四系が分布する.また、三瓶火山に由来する火砕流堆積物が三瓶山北側の大田市多根から市街を経て渡根に至る地域と神戸支流の流域に分布している. これらの分 布を第3図に、層序を第1表に示す.

Ⅱ.1 後期白亜紀-古第三紀火成岩類

本地域及びその周辺地域の後期白亜紀-古第三紀火成岩類は、明治時代の調査(山上,1897;鈴木, 1897)以降ほとんど調査されず、長い間、一括して西南日本内帯に広く分布する中生代あるいは白亜紀 の火成岩類の一部と考えられていた.これが後期白亜紀-古第三紀の様々な岩体からなることが明らか にされたのは、第二次世界大戦以降、とくに1960年代以降の地質学的研究(吉田,1961,1966;三浦, 1963;西山・三浦、1963;村上・長谷、1967;村上・西野、1967;西南日本内帯後期中生代火成活動研 究グループ、1967;村上、1974;東元、1975;松田、1976,1977,1979,1980,1981;中村、1979;山 陰中生代末火成岩活動研究グループ、1979;飯泉・沢田、1980;松田・小田、1982;服部ほか、1983; 飯泉ほか、1985;松浦、1989、1990;鹿野ほか、1991a;村上・小室、1993)によるところが大きい.こ れらの成果は、本地域を含む20万分の1地質図幅「浜田」(鹿野ほか、1988)や20万分の1地質図幅「松 江」(坂本・山田、1982)、20万分の1島根県地質図(島根県地質図編集委員会、1982、1997)、同説明書 (島根県地質図説明書編集委員会、1985)に生かされている.

本地域の後期白亜紀-古第三紀火成岩類は地域南部に広く分布しており,古い方から順に, 佐津首火 山岩類, 野城花崗岩, 八神火山岩類, 石見花崗岩, 岩脈に区分される.

佐津目火山岩類は、火山岩や火砕岩起源の砕屑粒子からなる砂岩礫岩とデイサイト溶結凝灰岩,流紋 岩溶結凝灰岩からなり、野城花崗岩に貫かれて熱変成を受けている.デイサイト溶結凝灰岩は分布が局 所的で,砂岩礫岩と指交関係にあると考えられる.流紋岩溶結凝灰岩はこれらを広く覆う.下位との関 係は直接観察できない.しかし,これに類似した流紋岩溶結凝灰岩がデイサイト溶結凝灰岩に挟まれて いるので,これらは一連の火山噴出物と考えることができる.佐津目火山岩類の流紋岩溶結凝灰岩は, 三瓶山地域(服部ほか,1983)及びその南の赤名地域(松浦,1990)において乙原花崗岩に貫かれ熱変成を 受けている邕智層群市井原層の流紋岩溶結凝灰岩に岩相が似ている.

野城花崗岩は、南隣三瓶山地域において服部ほか(1983)が乙原花崗岩に一括した岩体の一つ、野城岩体にあたる.この野城岩体は、模式の乙原花崗岩と同様、中-粗粒の黒雲母花崗岩を主体とし、石見花崗岩に貫かれているが、分布が模式地から隔絶していて、しかも、白雲母を普遍的に含み、かつ、斑状細粒花崗岩や文象斑岩を伴う点で岩質も異なることから、本報告では、これを野城花崗岩として乙原花崗岩とは独立に扱う.野城花崗岩の内部には、細粒石英閃緑岩及びトーナル岩の小岩体が点在する.野城花崗岩の白雲母 K-Ar 年代値は 56.1 ± 2.8Ma (服部ほか、1983)で、乙原花崗岩の黒雲母 K-Ar 年代値 65.2 ± 2.7Ma (服部ほか、1983)、60.0 ± 3.0Ma (柴田・石原、1974)より若干若い(松浦、1989).

八神火山岩類(沢田,1978a)は、服部ほか(1983)が三瓶山地域において乙原花崗岩を不整合に覆い石 見花崗岩に貫かれる火山岩類として一括した高山層群の一つである.本地域の南東部に分布し、石見花 崗岩に貫かれて熱変成を受けている.本地域内では八神火山岩類が野城花崗岩と接するところはないが、

第3図 山陰地方中部の地質図 鹿野ほか(1994)の第4図,及び20万分の1地質図幅「浜田」(鹿野ほか,1988),同「高梁」(寺岡ほか,1996)などを基に作成

- 6 -

第1表 石見大田及び大浦地域の地質総括表

*: Blow (1969) の新生代浮遊性有孔虫化石帯 K-Ar: K-Ar 年代 FT: FT 年代

三瓶山地域の頓原町志津見東方の沢において、乙原花崗岩相当の細-中粒黒雲母花崗岩が八神火山岩類 の安山岩火砕岩に覆われている(服部ほか、1983). 八神火山岩類の下部は、安山岩ないしデイサイトの 火山礫凝灰岩や凝灰角礫岩、溶結凝灰岩などからなり、上部は石英斑晶の目立つ流紋岩溶結凝灰岩、デ イサイトないし流紋岩の溶結凝灰岩などからなる. その分布の主体は、三瓶山地域にあり、本地域には 上部のみが分布する. 八神火山岩類のジルコンのフィッショントラック年代としておよそ45Maの値 (Matsuda, 1982)が、全岩 K-Ar 年代として25-30Maの値(沢田・板谷、1987)が報告されている. し かし、前者は測定方法が改善される前の測定値で妥当性が疑われる. また、後者の値は、石見花崗岩の 年代値に近く、熱変成を被って実際よりも若返っている可能性が高い.

石見花崗岩は細粒黒雲母花崗岩及び細粒角閃石黒雲母花崗閃緑岩を主体とし,岩体内部や隣接地域に 細粒石英閃緑岩及びトーナル岩の岩株や岩脈を伴う.細粒角閃石黒雲母花崗閃緑岩は暗色包有物を伴い, 三瓶山地域において服部ほか(1983)が混成岩とした岩石と主岩相とした細粒黒雲母花崗岩との中間的特 徴を備えた不均質な岩石である.細粒黒雲母花崗岩とは不明瞭な境界で接し,これを取り巻くように岩 体の境界に沿って分布する.石見花崗岩の黒雲母K-Ar年代値は31.6±1.6Ma(服部ほか,1983)で,白 雲母K-Ar年代値は31.5±1.6Ma, 31.2±1.6Ma(松浦,1989),ジルコンのフィッショントラック年代 は35.9±2.0Ma(本報告)である.

以上の火成岩類の中には、それらを貫いてはいるが定置時期を特定できない花崗閃緑斑岩や、石英斑 岩、アプライト、マイクロダイオライトの岩脈が認められる.これらの岩石に対比できる岩石は新第三 系中になく、定置時期は新第三紀以前と考えられるので、すべて始新世 - 漸新世の岩脈として一括した.

Ⅱ.2 新第三系

新第三系は、中国山地北縁から宍道低地帯,島根半島,そして日本海にかけて広く分布する(第3図). 島根半島は、宍道低地帯の複向斜と対をなす複背斜で、変形が著しく、向斜や背斜の間には同方向に走 る高角度(70-90°)の逆断層が発達している.島根半島の古浦西方から境水道を経て、美保、関の東端 地蔵崎へと続く宍道断層は、中でも最も大きな逆断層である(鹿野・吉田,1985;鹿野・中野,1985b, 1986). 0tuka(1937a,b,1939)は、このように著しく変形している島根半島の新第三系褶曲帯をShindi folded zone(宍道褶曲帯)と呼び、その変形をもたらした変動をShindi tectogenese(宍道変動)と名付け た.宍道褶曲帯は鳥取沖まで延伸していることが確認されている(田中・小草,1981). 一方、中国山地 北縁では、日本海沿岸に沿って北側に単調に傾斜して分布しており、宍道変動に対応して地層の分布や 層厚が変化はする(多井,1973a)ものの、宍道褶曲帯のような著しい変形は認められない. 光子,松江、 出雲、大田では、大きく内陸側に湾入した基盤を前期中新世初頭の溶岩火砕岩が埋積している(吉田, 1953;三位・吉谷,1972;吉谷ほか、1976). この湾入部は藤田(1972)のいう陥没盆地(三位・吉谷, 1972;山陰グリーン・タフ団体研究グループ,1973,1979;吉谷ほか,1976;山内・吉谷,1981), コールドロン(沢田,1978a,b)、あるいはリフト盆地(山内・吉谷,1992;鹿野ほか,1993)と考えられ ている.本地域南東部は南隣の三瓶山地域から東隣の掛合地域にまたがる出雲湾入部の湾頭部に、また、 西部は大田湾入部の湾頭部にあたる.

-8 -

大田出雲両湾入部の新第三系は、1950年代に広島大学の研究者によって集中的に研究された(今村、 1951、1953;今村ほか、1952、1954、1958;吉田ほか、1952;吉田、1953;Mukae、1954、1958;今 村・迎、1955;岡本・多井、1957;岡本、1959).今村ほか(1958)とMukae(1958)はその成果をまとめ、 両湾入部の中新統を下位から、波多亜層群、川合累層、久利累層、大森累層,本志名累層,松江累層に 区分するともに、波多亜層群から大森累層までを石見層群、布志名累層と松江累層を出雲層群として 一括した(第2表及び第3表).その後、大田出雲両湾入部及びその周辺地域の広域調査を実施した通商 産業省(1967, 1969, 1970a,b, 1971)は、中新統をほぼ同様に区分し、それぞれ、波多層、川合層、久 利層、大森層、布志名層、松江層と呼んだ.この層序区分は、岩相層序、生層序の広域的な対比に基づ くもので、金属鉱物探鉱促進事業団(1970, 1971, 1972a,b)、歌田・湊(1972)、三位・吉谷(1972)、多 井(1973a,b)、三浦(1973, 1974)、吉谷ほか(1976)、井上(1980)、島根県地質図編集委員会(1982, 1997)、坂本・山田(1982)、鹿野・中野(1985a)、鹿野ほか(1988, 1989, 1991a, 1994)、高安ほか(1992) らによって踏襲されている.

一方,沢田(1978a)は、出雲湾入部の石見層群を詳しく調査し、波多亜層群最上部鎬山累層(Mukae, 1958;岡本,1959)を大喜累層として波多亜層群から分離独立させ、大呂累層から大森累層までを簸前 亜層群,波多亜層群の波多火山岩類(Mukae1958;岡本,1959)を波多亜層群とした.また、波多亜層群 を、吉田複合岩体、入間累層, 穴見累層に分けて、さらに入間累層を成砕屑岩層,松笠火山岩層, 人童 山安山岩層に、穴見累層を兜山安山岩層,等谷安山岩層,柄栗石英安山岩層に細分した.大呂累層の 大部分は、川合累層の砂岩礫岩の直下にあるものの、一部これと互層、漸移することから、通商産業省 (1970a)によって川合層に含められている.大田湾入部において川合層の砂岩礫岩の直下にあり、通商 産業省(1969,1970a,b)や多井(1973a,b)、鹿野ほか(1988)が波多(累)層に対比した火山岩類,すなわち、 戸蔵川火山岩類[服部ほか(1983)では、戸蔵をコゾウと呼んでいるが、正しい読みはトグラである]や 戸蔵呂谷火山岩類(服部ほか,1983)に、この大呂層に対比される可能性が高い(鹿野ほか,1993).大田 湾入部では、川合(累)層の砂岩礫岩とその直下の中新世火山岩類との関係が整合か不整合か意見が分か れていた(例えば、通商産業省、1967;多井、1973a,b;竹ノ内ほか、1982)が、両者を不整合とする積 極的な証拠はない(服部ほか、1983).

本報告では、このような事情を勘案して、新第三系を下部から順に、通商産業省(1967, 1969, 1970a, b, 1971)とほぼ同様に区分する.ただし、波多層と川合層との区分については、すでに述べたように混 乱しているが、出雲湾入部においては、沢田(1978a)の波多亜層群を波多層、大呂累層と川合累層とを 合わせたものを川合層とし、大田湾入部においては、服部ほか(1983)の小松地デイサイト層を波多層、 戸蔵川火山岩類と戸風呂谷火山岩類、川合層とを合わせたものを川合層とする.大森層については、鹿 野ほか(1991a)の再定義に従い、Tonita and Sakai(1937)の大森統と布志名統来待層とを合わせた地層 とする.また、通商産業省(1967, 1969, 1970a, b, 1971)ほかによって松江層に一括されている地層は、 地域によって岩相や年代に違いがあり、斐川町付近では斐川層(0gasawara and Nomura, 1980)、本地 域の神西湖付近では神西層(高安・中村, 1984)と呼ばれている.そこで、本地域においては、高安・中 村(1984)が神西湖南岸を模式地とし、定義した神西層を用いる.

波多層は、本来、出雲湾入部の最奥部、出雲市南方の飯石郡掛合町波多及び周辺地域に分布する火山

-9-

ן S	'omita and akai (1937)	今村ほか (1952)	吉田 (1953)	今 Mu	[、] 村 (1954) ukae (1954)	岡	本・多井 (1957)		Mukae (1958)	北条 (1964)	通商産業省 (1970a, b)		沢田 (1978a)	Ogasawara and Nomura (1980)	高	6安・中村 (1984)	鹿野ほか (1991)	本報告
	松江統 上部 布志名層							出	松江累層		松江層			斐川層		神西層	斐川層	神西層
布志名統	下部 布志名層	布志名層		冇	5志名累層	出	布志名 累層	雲層 群	布志名 累層		布志名層			布志名層	出雲層群	布志名層	布志名層	布志名屠
	来待層	来待層		ļ	来待累層	展 展	来待累層					1		来待層				
大森統	複輝石 安山岩	大森層群 (須佐	大森累層	;	大森累層	T AFF	大森累層		大森累層	普通輝石 玄武岩 角閃石	大森層		大森累層	大森層			大森層	大森層
жı		火山右魚)		q				1		安山岩	T				石	大森層		
+	玄武岩 上部 玉浩屬			E	上部層	玉	上部 玉造累層	石見層群	久利累層	久利層	久利屠	簸川西	久利累層	佐倉層	見層群	な利興	久利層	久利層
造統	下部玉造層	東須佐層群	東須佐累層	造層群	下部層	_ 造 層 群	下部 玉造累層	- 0+	川合累層	川合層	 川合屠	 □ □ 一 辞	 川合累層	玉造層		川合層	川合層	
	L				波多層群	波多	鍋 高窪 山 層 累 根波 層 層	し 波多亜	。 鍋山累層	人 高窪挟炭層 石美含有普通輝石 安山岩黒雲母浅数岩			大呂累層			1		川合層
	改多火山 宕 類 	▲ 波多着辞	(鍋山層群 を含む)	(綱川増群 を含む)	群	波多 火山岩類	層群	 波多 火山岩類		· 液多層	<i>吸罗</i> 層 极多重 屠	穴見累層 入間累層					波多層	

第2表 出雲市及び周辺地域の中新統層序の変遷

Ta Sa	'omita and akai (1937)	今村ほか (1952)	吉田 (1953)		今村 (1953)	4	今村ほか (1958)	通商産業省 (1967)	多井 (1973)	竹	rノ内ほか (1982)		服部ほか (1983)	鹿野ほか (1993)	本報告
布	松江統 上部 布志名層														神西屠
志名統	下部 布志名層							布志名層	布志名層						布志名層
大森統	米符層 複輝石 安山岩 大森層	大森層群 (大森 火山岩類)	大森累層	出雲層群	大森累層		大森累層	大森層	大森累層		大森累層			大森層	大森層
玉兆	玄武岩 上部 玉造層	川合屬群	川合累屬	川合	上部層		久利累層	久利屠	久利累層	石見層群	久利累層		久利層	入利屠	 久利層 7
統	下部 玉造層			層群	下部層	石見層群	川合累層	 川合層	川合累層		川合累層	川合層		┃	/
		君谷火山岩類	君谷層群		君谷屬群	一 矸	波多 亜層群	波多層	波多累層	波	多火山岩類	波多層	· / 戸蔵呂谷	戸蔵川 火山岩層 戸風呂谷層 小松地 デイサイト層	 波多層

第3表 大田市及び周辺地域の中新統層序の変遷

- 11 -

岩層に与えられた名称で、その大部分が陸上あるいは陸水域に噴出した溶岩火砕岩からなる.この、模式の波多層は、本地域から、木次、三瓶山、頓原の各地域にかけて広がる掛合コールドロンと呼ばれる火山性陥没盆地を埋積している(沢田、1978a, b). 基盤とは不整合あるいは断層関係で接する.また大森層に直接覆われ、野田山複合岩体(沢田、1978a)に貫かれる.野田山複合岩体の黒雲母のK-Ar 年代値は、18.0±1.3Ma、最上位の柄栗石英安山岩層の溶結凝灰岩のジルコンのフィッショントラック年代値は、26.9±6.2Ma(鹿野・吉田、1984)とされていたが、改善された測定方法による最新の測定値は、18.4±1.2Ma (本報告)である.本地域には柄栗石英安山岩層のみが分布する.

大田湾入部の湾頭にあたる本地域西南部には波多層は分布しない.南隣の三瓶山地域とその西側の温 。 泉津地域に分布する波多層は、デイサイト溶結凝灰岩(小松地デイサイト層)からなり、基盤とは不整合 または断層関係で接する. そのジルコンのフィッショントラック年値は18-23Ma(松田、1979;鹿野・ 吉田、1984)、全岩 K-Ar 年代値は18.9±0.9Ma(鹿野・吉田、1984)で、柄栗石英安山岩層のジルコン のフィッショントラック年代値に近い.

通商産業省(1967, 1969)は、温泉津地域、江津市付近の海生動物化石を産する砂岩タービダイトや、 大田市大森町近くにあって川合層砂岩礫岩に覆われ砂岩泥岩薄層を挟む流紋岩火砕岩を波多層に対比 し、波多層の一部を海成層と考えた.しかし、これらは川合層または久利層と整合または指交関係にあ るので、本報告では波多層から除外する.

川合層と久利層は、それぞれ砂岩礫岩、泥岩で特徴づけられる海成層で、安山岩やデイサイト、流紋 岩の水底溶岩火砕岩を挟む.両層は一部指交関係にあり、ともに海生動物化石を産する(通商産業省、 1967、1969、1970a,b、1971;岡本ほか、1971;黄・岡本、1979;多井・加藤、1979;竹ノ内ほか、 1981、1982;野村、1986c).両層の模式地である大田市川合町と久利町を流れる静間川上流の忍原川 (三瓶山地域)沿いでは、川合層からVicarya cf. japonica などの浅海生貝化石が、また、久利層から有孔 虫化石が産する(竹ノ内ほか、1981、1982).久利層の下部から産する底生有孔虫化石の殻は石灰質のも のと砂質のものとがあるが、上部から産する底生有孔虫化石の殻はほとんどが砂質である(竹ノ内ほか、 1981、1982).多井(1963)は、底生有孔虫化石群集が明瞭に変わるこのような境界をForam. Sharp Line (FSL)と名付け、日本海に面する各地の堆積盆で広域的に追跡できることを示唆した.米谷・井上 (1981)は、FSLをBlow(1969)の有孔虫化石帯N.9とN.10との境界(およそ14.5 Ma)に対比した.FSL は日本海拡大の停止とともに西南日本が隆起し始める(鹿野ほか、1991b)時期に構造運動に伴って堆積 盆への底層水の流入が制限され、堆積盆の溶存酸素量が急激に低下したことを示しているらしい(野村、 1989、1992).Nomura(1992)は、大和海盆の ODP site 797におけるFSLと微化石層序との対比に基づ いてFSLの年代を14.2Maと推定している.

竹ノ内ほか(1981, 1982)は忍原川沿いで得られた結果に基づいて, 久利層の中に FSL が存在すると 考えた.しかし, FSL の年代を14.2Ma とするとその値は川合層や久利層の火山岩の放射年代値15-19 Ma(Uto, 1989; Morris et al., 1990; Otofuji et al., 1991; 沢田, 未公表)や川合, 久利両層を不整合に 覆う大森層の火山岩の放射年代13-16Ma(鹿野・吉田, 1984; Uto, 1989; Morris et al., 1990; Otofuji et al., 1991; 沢田, 未公表)に矛盾する.野村(1986c)は, 竹ノ内ほか(1981, 1982)と同一のルートにつ いて底生有孔虫化石群集を統計学的に解析し, 彼らのFSL の認定に問題があったことを指摘している. 大森層は川合層, 久利層などを不整合に覆う地層である.陸上ないし浅海に噴出したデイサイト溶岩, 安山岩 - デイサイト溶岩, 安山岩 - デイサイト火山礫凝灰岩 - 凝灰岩, 安山岩石質火山礫凝灰岩 - 凝灰 岩, 安山岩スコリア - 軽石火山礫凝灰岩 - 凝灰岩, 安山岩軽石火山礫凝灰岩 - 凝灰岩と, これらと指交 し, あるいはこれらを覆う礫岩砂岩とからなる.大森層と久利層の間の不整合は, 丹後半島(山元・星 住, 1988)など西南日本の日本海沿岸で14-15Ma頃噴出した安山岩の基底に広く認められるものの一 つであり, 広い範囲にわたり沿岸域が陸化したことを示す(鹿野・中野, 1985a;山元・星住, 1988;鹿 野ほか, 1991b).隣接する島根半島では, この当時,褶曲が始まった可能性が高く(山内・吉谷, 1981 ;鹿野・吉田, 1985;野村, 1986a),海底火山体や褶曲構造の高まりの周囲にあった多量の砕屑物が, 不安定な斜面上で頰繁に発生する重力流により運搬され堆積している(Kano and Takeuchi, 1989).

布志名層は,礫岩,砂岩及びシルト岩からなる.デスモスチルスやタコブネを産する地層として,ま た海生貝化石を多産する地層として有名な海成層で,貝及び底生有孔虫化石群集の解析により,その堆 積環境が時とともに沿岸から沖合(水深 50-150m)へと変化したことが明らかにされている(Ogasawara and Nomura, 1980;野村,1986b;高安・中村,1984 など).また,この頃,島根半島の南側では褶曲 によって生じた東西方向の深い(恐らく水深 500-1,000mの)凹地に泥岩やシルト岩が堆積した(多井, 1955;野村,1986b).大森層の砂岩礫岩と異なり,布志名層の砂岩礫岩を構成する砕屑物粒子は多種多 様である.

神西層は布志名層に引き続き堆積した砂岩,シルト岩及び礫岩からなり,布志名層と同様に海生貝化 石を多産する(高安・中村,1984). 貝化石群集が示唆する堆積環境は,水深0-50mと,布志名層の上 部より浅い. 神西層に対比される東隣今市地域の斐川層は,ところにより亜炭を挟んでおり,浅海化が 一層進んだ環境に堆積したことがうかがえる(0gasawara and Nomura, 1980;鹿野ほか, 1991a).

神西湖の東岸に分布する神西層には基底部にアルカリ玄武岩の火山礫岩,火山礫凝灰岩,凝灰岩から なる直径 2km の小さな火山岩体(神西玄武岩)が認められる.この火山岩体はマグマ水蒸気爆発によっ て生じた火砕丘の名残で,その直下に小規模なシルを伴う(鹿野ほか,1996).宇都ほかの未公表資料に よれば,アルカリ玄武岩火山礫とシルの全岩 K-Ar 年代値は,それぞれ,13.6±0.5Ma,14.0±0.2Ma(第 8表)で,高安・沢田(1989)の報告した同じシルの全岩 K-Ar 年代値13.2±0.3Ma とほぼ同じ値を示す. 神西玄武岩のこれらの年代値は,松江層のアルカリ玄武岩ないし粗面安山岩の全岩 K-Ar 年代値11-12 Ma(鹿野・中野,1985a;Uto,1989;Morris et al,1990;Otofuji et al.,1991)より有意に古い.このこ とは,本地域において神西層と布志名層とがなす境界は松江地域において松江層と布志名層とがなす境 界よりも古く,岩相層序上の境界が時間面に斜交していることを意味する.

本地域では神西層より若い新第三系は露出していない. 波多層から神西層に至る中新統は,大田市朝 ^{**} 山町付近で海岸線に沿って長さ2kmにわたって褶曲してはいるものの,おおむね西南西 - 東北東方向 の走向を示し,北側に緩く傾斜しほとんど変形していない. 出雲湾入部の最奥部は掛合コールドロン(沢 田,1978a)をなす波多層の溶岩火砕岩で占められ,それらと後期白亜紀 - 古第三紀火成岩類との間には 両者を限る正断層が発達している(沢田,1978a).川合層及び久利層は,後期白亜紀 - 古第三紀火成岩 類や波多層の間の凹地を埋積するとともに,海岸に沿って広がっている. 両層の堆積盆地の形態は見え ないが,多井(1973a,b)は,両層の層厚分布が東北東 - 西南西方向に延びていることから,その方向に

-13 -

沿った堆積盆地を想定している.一方,大森層は,沿岸から湾入部最奥部まで分布して直下の久利層の みならず川合層,波多層をも不整合に覆っており,しかも,川合層久利層まで貫く岩脈と大森層まで貫 く岩脈とでは方位が異なり,西南西-東北東と南南西-北北東を向いている.このことは,大森層が堆 積する直前に大きな応力場の転換があり,それに伴う構造運動が始まったことを意味している.このよ うな応力場の転換と構造運動は,ときを同じくして島根半島やその周辺地域でも起こっている(鹿野・ 吉田,1985;野村,1986a;鹿野・中野,1985b,1986;鹿野ほか,1989,1991a,1994).島根半島では 褶曲する松江層を和久羅山安山岩が不整合に覆っており,5-6Maの全岩K-Ar 年代を示す(川合・広 岡,1966;Morris et al.,1990)和久羅山安山岩が噴出する前(多井,1973a,b;山内・吉谷,1981;鹿 野・吉田,1985;野村,1986a)の後期中新世後期に褶曲が完成したと考えられている.山内・吉谷 (1981)は、島根半島及び周辺地域の褶曲は、東西方向に延びた基盤のブロックが上昇することによって 形成されたとしている.

Ⅱ.3 第四系

本地域に分布する第四系は、都野津層群、中位 I 段丘堆積物、中位 I 段丘堆積物、古期扇状地堆積物、古期扇状地堆積物、差点。 物、差海層、三瓶火砕流堆積物、低位段丘堆積物、多根火砕流堆積物、中海層、砂州及び海岸砂丘堆積物、三角州、扇状地及び河川堆積物である(第4表).都野津層群は一部鮮新世にかかる堆積物であるが、本報告では構成が複雑になることを避けるため、便宜的に第四系の項の中で記述する.都野津層群や三瓶火山に由来する三瓶火砕流堆積物と多根火砕流堆積物を除く本地域の第四系は、本地域が宍道低地帯の延長上にあることを考慮して、宍道低地帯における鹿野ほか(1991a)の層序区分に準拠して区分した.

都野津層群は、本地域に隣接する温泉津地域のさらに西側にある江津地域内の都野津を模式地とし、 本地域から温泉津、江津、浜田の各地域にかけて広く分布する鮮新世末 - 中期更新世の海成 - 非海成層 である. 固結 - 未固結の砂や礫、泥の堆積物からなり、温泉津地域では大江高山火山噴出物を間に挟む. 都野津層群は、当初、島星累層(今村、1951)、大屋層群(今村ほか、1952)、大江層群(吉田ほか、 1952)などさまざまな名称でよばれていたが、Imamura(1957)によって現在の名称に統一された. 当時は、 植物化石(Miki, 1950, 1952, 1956, 1957, 1958;高橋, 1959, 1961)や岩相から都野津層群は鮮新世の 非海成層であると考えられていた.

今村(1964)がその下部に海生の貝や魚類の化石が産出することを見い出してからは、層序の詳細が検 討されるようになった.今村(1964)は、都野津層群を海成層を挟む下部層と大江高山火山噴出物を挟む 上部層とに区分し、産出化石と層相に基づいて大阪層群に対比した. Onishi(1969)は、江津地域内の都 野津において四枚の海成粘土層を確認し、下位から順にM1, M2, M3, M4 と名付け区分するとともに、 花粉化石に基づいて鮮新世と更新世との境界をM3 の上限に置いた.また、海成粘土層 M4 が温泉津地 域の大家付近で大江高山火山噴出物と指交することを指摘した.さらに、山陰第四紀研究グループ (1969)は、都野津から東方の広い地域を調査し、今村(1964)の下部層を都野津層と名付け、また、大江 高山の東方、温泉津地域の水上から三瓶山地域の西部にかけて分布する非海成の砂礫堆積物を認め て、これを水上層と名付け、都野津層に対比するとともに上層部と合わせてこれらを都野津層群として

一括した(Onishi, 1969). その後、 大西・調枝(1970)、 調枝(1970, 1971)、 都野津団体研究グループ (1972, 1983),福間(1972),飯塚ほか(1974),中国四国農政局計画部(1976),島根県立工業技術センター 資源科(1976, 1977, 1978, 1979, 1982, 1983), 宇野(1978, 1979, 1994), 井岡ほか(1990), 岩内ほか (1993)、水野・武智(1993)、水野ほか(1993, 1994)、水野(1996a, b, c)らの研究よって、都野津層群 が下位から、海成粘土層M1-4を伴い礫岩砂岩や泥岩からなる層と、赤色に風化した礫岩を主体とす る層、砂丘砂からなる層とに区分されることが明らかになった.水野ほか(1994)は、このように区分さ れるそれぞれの層は特有の堆積環境を反映した特有の堆積相によって特徴づけられると考え、それぞれ を「層」(Formation)として識別し、都野津層,星の島層,室神山層と呼んだ. さらに、水野(1996b)は、 都野津層群をこのように分けた場合の都野津層と都野津層群との混同を避けるために、都野津層群を江 津層群と改称することを提案した.同じ地名を異なる層序区分単位に使用しないという国際地質科学連 合(International Union of Geological Sciences)の層序区分に関する国際分科委員会(International Subcommission on Stratigraphic Classification)の地層命名規約(International Subcommission on Stratigraphic Classification, 1994)に従えば、都野津層群または都野津層を改称するのは当然ではある.しか し、都野津層群という名称は長い間使われていてあまりに有名なので、むしろ、これに包含される都野 津層を改称する方が混乱が少なくてすむ、本報告ではこのような考えに立って該当する地層群を従来ど おり都野津層群と呼ぶことにした.

水野ほか(1994)によれば、都野津及び周辺地域の都野津層は、河川が流入する潟湖ないし外浜の環境 に堆積した砕屑物で、大江高山火山噴出物を挟み、標高120-130m以下に分布する.星の島層は、火 山砕屑粒子に富む河川堆積物で、標高70m以下の地域に分布する.室神山層は、海浜の砂丘堆積物で、 標高50-120mの狭い範囲に分布する.火山砕屑物は挟まない.都野津層,星の島層,室神山層は互い に不整合関係にある.井岡ほか(1990)の古地磁気層序対比によれば、都野津層の下限と上限の年代は、 それぞれ、4.1Ma、1.1Ma である.この年代の推定値は、大江高山火山を構成し、金銀銅鉱床を胚胎す る大森町仙山や要害山(温泉津地域)のデイサイト(金属鉱業事業団、1990,1991,1992,1993)の全岩、 黒雲母、セリサイトについて得られたK-Ar 年代値1.1-2.2Ma (金属鉱業事業団、1991)、ジルコンにつ いて得られたフィッショントラック年代値0.9-1.2Ma(井上ほか、1983)に矛盾しない.星の島層、室神 山層の年代は確定しがたいが、星の島層の火山砕屑粒子が大江高山火山噴出物に由来するものとすれば、 星の島層は大江高山火山の活動末期、室神山層は終了後に堆積したと考えることができる(水野ほか、 1994).本地域内では、都野津層や星の島層に対比しうる堆積物は見あたらないが、石英に富み淘汰の 良い未固結の細粒砂堆積物が大田市波根北側の標高90-120mの地域と大田市静間町西側の標高40-90 mの地域に分布している.これらは、差海層や段丘堆積物のなす堆積面より高いところに分布しており、 更新世後期よりも古い砂丘堆積物、すなわち、室神山層に対比される堆積物と考えることができる.

本地域の東方延長上にある宍道低地帯には、そこを埋積して第四紀堆積物が広く分布しており(第3 図)、海岸平野の形成過程について関心が高まった1960年代以降、中海臨海地帯の開発などとも関連し て三位(1962, 1966)、小畑(1967a)、建設省計画局ほか(1967)、三位ほか(1969)、山陰第四紀研究グルー プ(1969)、水野ほか(1972)、三位・藤井(1972)などによってその岩相と層序、堆積環境についての研究 が進められ、多くの知識が集積された、大西(1979, 1985)、大西・松田(1985)は、これらの成果とその

-16 -

後の知見を基に, 宍道低地帯全域の第四系について層序と分布をまとめ,大西(1988)は,ほかの地域と の対比を試みている.また,同じ頃,宍道湖の音響探査やピストンコアの分析が中海・宍道湖自然史研 究会(1982)ほかによって系統的に行われた.その成果は,三梨・徳岡(1988)編集の資料集「中海・宍道 湖-地形・底質・自然史アトラス」や徳岡ほか(1990)にまとめられている.

しかし,鹿野ほか(1991a)は,宍道低地帯地下にある更新世堆積物の層序区分や,これと宍道低地帯 縁辺部の段丘堆積物や扇状地堆積物との対比について依然として不明な点が残されていたために,大山 ****** 松江軽石層及び三瓶木次軽石層という二つの更新世テフラを基準にして,地下の堆積物については,そ の堆積相と層序,分布を,地表の段丘堆積物及び扇状地堆積物については,面高度や構成物をあらため て検討し,大西(1985)並びに大西・松田(1985)の区分を修正し,宍道低地帯に分布する第四紀堆積物を, 古い方から高位I段丘堆積物,高位II段丘堆積物,高位III段丘堆積物,中位 I段丘堆積物,中位 II段丘堆積物,古期扇状地堆積物,差海層,低位段丘堆積物,中海層,砂州及び海岸砂丘堆積物,三 角州,扇状地及び氾濫原堆積物(本報告の河川堆積物の大部分に相当する)に区分した.このうち,段丘 堆積物については,大西(1985,1988),大西・松田(1985)の区分と重なるところも多いが,区分が変更 された部分について従来の区分との混同を避ける必要があることと,新たになされた区分と対比が必ず しも確定していないこととを考慮して,模式地を特定するような固有地名を避けた形ですべての名称を 変えている.

宍道低地帯に分布するこれらの第四紀堆積物のうち,高位Ⅰ段丘堆積物,高位Ⅱ段丘堆積物,高位 Ⅲ段丘堆積物は,従来の山廻砂礫層,乃白層,乃木層に相当する(鹿野ほか,1991a).本地域には分 布しない.

中位 I 及び II 段丘堆積物は,従来の乃木層の一部と湯町層,安来層にそれぞれ相当し(鹿野ほか, 1991a),海,湖または河川に堆積した礫,砂及び泥からなる.中位 I 段丘堆積物の堆積面の比高は 10 -20m で,本地域では,神西湖の南側に面した湖陵町三部にのみ分布する.この湖陵町三部では,厚さ 1m 以上の細粒砂層に厚さ2m の礫層が重なる.上限は土壌に覆われて見えないが,これらの砂礫層は 赤味を帯びた褐色 - 黄褐色を呈する.中位 II 段丘堆積物は,海岸に近い神西湖の南側に面した湖陵町 三部で比高5-10m,内陸の神戸川沿いの佐田町窪田や出雲市乙立町で比高 20-30m の堆積面をなして 分布している.出雲市乙立町向名では,三瓶木次軽石層(町田ほか,1985)または三瓶雲南軽石層(林・ 三浦,1986)に対応すると思われる赤褐色風化火山灰に覆われている.

古期扇状地堆積物は、中位 I 及び II 段丘堆積物のいずれかの堆積時あるいはそれ以前に大森層や久利層の火山岩がなす高まりの周辺に堆積した火山岩由来の岩屑からなる堆積物である.

差海層は、鹿野ほか(1989)によって再定義された地層で、三位(1966)の弓ヶ浜層と安来層とを合わせ たものに相当する.円磨された細-中礫からなる礫層や、平行ないし低角斜交層理の発達した砂層、腐 植あるいは貝化石を含む泥質堆積物などの海岸や砂州、潟湖の堆積物と、これらを広く覆う淘汰の良い 細-中粒の砂丘砂からなり、中位段丘堆積物や古期扇状地堆積物とは指交関係にある.

低位段丘堆積物は礫を主体とする堆積物で、従来の奥谷層などに相当する(鹿野ほか、1991a).本地 域では、中位 I 及び II 段丘堆積物より低い比高 10mの堆積面をなして神戸川や静間川沿いに分布す る. 中海層は、中海及び宍道湖において、現堆積面から下方に連続する汽水成 - 海成泥質堆積物を主体と する地層(三位、1962、1966;三位ほか、1969;水野ほか、1972)とされているが、砂州や、沿岸の三 角州、扇状地、沖積平野をなす堆積物についても特に区別することなく、これらを中海層として一括し て扱われていることが多いので、本報告でも、鹿野ほか(1989、1991a、1994)にならい、便宜上、宍道 低地帯の西方延長上に分布する水底下の完新世汽水成 - 海成堆積物及びこれと指交する堆積物を一括し て中海層として扱う.ただし、現在地表上にある"沖積層"については、それぞれの堆積学的特徴に応 じて砂州及び海岸砂丘堆積物と、三角州、扇状地及び河川堆積物に区分し記載する.

本地域では、神西湖や波根湖などの海跡湖とその周辺地域に、主として潟湖に堆積した砂礫や泥から なる中海層が分布する.これらの堆積物は模式の中海層と同様、砂州や海岸砂丘堆積物あるいは三角州、 扇状地及び河川堆積物と指交し、海進海退の一つの輪廻を示す.中海及び宍道湖の中海層は、貝化石群 集と堆積物の特徴、それらの¹⁴C年代値から、海進期(1万-6千年前)、最大海進期(6千-3千年前)、 海退期(3千年前以降)に対応する下、中、上部の三層に区分できる(水野ほか、1972).また、中海の東 側の弓ヶ浜(境港地域)の地下には、中海層の泥質堆積物の直下に下部砂層、中部泥層、上部砂層に分け られる完新世の汽水成ないし海成堆積物、すなわち、境港層がある(水野ほか、1972).大西(1977、 1986)及び大西ほか(1990)によれば、宍道湖及び中海には境港層に対応する二つの花粉帯と、その上の 中海層に対応する五つの花粉帯とが認められる.しかし、境港層の分布は境港付近に限られると予想さ れており(水野ほか、1972)、中海及び宍道湖で行われた音波探査では、境港層の存在を示す結果は得ら れていない(三梨ほか、1986、1987、1988;徳岡ほか、1991).

砂州及び海岸砂丘堆積物は,北隣大社地域の大社町から本地域の多伎町小田にかけて続く砂浜と,大田市五十猛町大浦から波根町にかけて点在する小さな入り江の奥の沖積低地へと続く幅の狭い砂浜,そしてそれらの背後の砂丘を構成する堆積物である.これらの背後には,周辺の河川から供給された砕屑物が三角州や扇状地,氾濫原,自然堤防,流路をなして堆積している.

宍道低地帯の第四系の対比基準となっている二つの鍵層のうち、大山松江軽石層は、上乃木火山灰層 (三位、1962)、上乃木軽石(大西、1979)に相当する.主な重鉱物は角閃石で、磁鉄鉱と微量の黒雲母、 カミングトン閃石を伴う(町田・新井、1979).三瓶木次軽石層は、古志原火山灰層(三位、1962)、木次 軽石(松井・井上、1971)に相当する.全体として米ぬか状で黄褐色を呈する.鉱物組成は斜長石、黒雲 母で、微量の角閃石と鉄鉱を含み、三瓶雲南軽石層(林・三浦、1986)と類似するものの、比較的ガラス が少ない点で区別し得る(林・三浦、1986).宍道低地帯及び周辺地域に分布する大山松江軽石は数10 cm-1m、三瓶木次軽石層は1-3mと厚く、この地域でこれらに匹敵する層厚を有する降下火砕堆積物 がほかに見あたらない上、主な重鉱物が異なるので両者の区別も容易で、よい鍵層となっている(鹿野 ほか、1991a、1994).

三瓶木次軽石層は、三瓶山周辺において阿蘇4火山灰層(7-9万年前:町田ほか、1985;町田・新井、1992)に直接覆われており(林・三浦、1986)、その年代は7-9万年よりも古い.一方、大山松江 軽石層は、高位 I、II、III段丘堆積物の赤色土壌を覆っており、また、段丘堆積物の赤色土壌化は第 四紀の温暖期(多くは最終間氷期、一部はそれより古い間氷期または最終氷期の亜間氷期)に進んだ(松 井・加藤、1962)とされているので、おそらく13万年前よりもやや新しく(町田・新井、1979、1992;

-18 -

津久井・柵山,1981),7-9万年前よりも古い.津久井・柵山(1981)は,大山山麓で得た火砕堆積物の層序を基に,大山松江軽石層の年代を11-12万と仮定し,大山倉吉軽石層の年代を4.5-4.7万年前(町田・新井,1979),その間の火山灰土の堆積速度を一定とすると,三瓶木次軽石層の年代が7-8万年前になることを指摘している.この推定値は層序から推定された値に矛盾しないので,彼らによって仮定された大山松江軽石層の年代には合理性がある.なお,その後,大山倉吉軽石層については,²³⁸U-²³⁰Th 放射非平衡系による年代測定で4万3千年前の値が報告されており(大村ほか,1988),計算に用いたこの軽石層の年代値が妥当であったことが裏付けられている.

三瓶火砕流堆積物と多根火砕流堆積物は三瓶木次軽石層と同様,三瓶火山に由来する火山噴出物である. 三瓶火山噴出物に関する研究は, Kozu and Yoshiki (1929),種子田(1944),山口(1955,1956, 1963),小畑(1967b),田原ほか(1968)らによって早くから行われてきた. しかし,詳しい層序と分布を明らかにしたのは鈴木ほか(1968)が最初である. 鈴木ほか(1968)の層序区分は,その後,松井・井上(1971),服部ほか(1983),林・三浦(1986,1987),三浦・林(1987)らによって再検討されたが,内容が詳しくはなっても基本的枠組みは変わっていない(第5表).

三瓶火砕流堆積物(服部ほか,1983)は、角閃石黒雲母流紋岩軽石と火山灰とからなり、三瓶川から大 田市街を経て大田市久手町に至る地域に分布するほか、神戸川支流の伊佐川や本流沿いの横見に点在す る.小畑(1967b)の大田軽石流、鈴木ほか(1968)の三瓶軽石流堆積物、田原ほか(1968)と松井・井上 (1971)の大田軽石流堆積物に相当し、直下に三瓶ベースサージ堆積物、直上に三瓶降下堆積物を伴う(服 部ほか、1983).林・三浦(1986,1987)と三浦・林(1987)は、これらを一連の噴火の産物と考え、三瓶 大田軽石流と名付けて一括している.また、松井・井上(1971)が大田降下火山灰とよんだその直下の軽 石堆積物が、三瓶木次軽石層とは似ているものの、テフラの対比に基づいてそれよりも若いことを示し、 三瓶雲南軽石層と名付けている.

多根火砕流堆積物(鈴木ほか,1968)は、角閃石黒雲母デイサイト溶岩の岩片からなる石質火砕流 (Block and ash flow)堆積物で、三瓶山の北側の三瓶川上流と神戸川の支流である伊佐川の上流、山口 の谷筋にわずかながら分布する.松井・井上(1971)の長者原火砕流、林・三浦(1986,1987)と三浦・林 (1987)の三瓶多根火砕流に相当する.

林・三浦(1986, 1987)と三浦・林(1987)は、三瓶火砕流堆積物を覆う三瓶池田降下軽石(松井・井上, 1971)が姶良Tn火山灰(2万1千年前-2万2千年前:町田・新井, 1992)に覆われていることと、彼 ら自身が得た炭化木の3万8千年前よりも古いという14C年代値に基づいて、三瓶火砕流堆積物の噴出 年代をおよそ4万年前とした.しかし、服部ほか(1983)は、三瓶火砕サージ堆積物中の木片の¹⁴C年代 として、1万9千年前ないし2万9千年前の値を、また、鈴木ほか(1968)と服部ほか(1983)は、三瓶火 砕流堆積物中の炭化木の¹⁴C年代として、2万2千年前ないし3万年前の値を報告している.服部ほか (1983)は、年代値のばらつきが大きいので年代は不明であるとしているが、三瓶火砕流堆積物中の炭化 木の¹⁴C年代値は、三瓶火砕流堆積物が姶良Tn火山灰よりも古いという層序関係に矛盾しない.したがっ て、本報告では、三瓶火砕流堆積物の年代を2万2千年前ないし3万年前としておく.多根火砕流堆積 物の年代については、林・三浦(1986, 1987)と三浦・林(1987)が、広域テフラと火山ガラスや構成鉱物 の化学組成を組み合わせて火山灰層序と年代を検討し、5-6千年前と推定していたが、多根火砕流堆

第5表 三瓶火山噴出物層序の変遷と三瓶火山活動史

服部ほか(1983)及び林・三浦(1987)を改変

- 20 -

積物中の炭化木について最近得られた¹⁴℃年代はおよそ4千3百年前である(松井, 1994). 三瓶火砕流 堆積物の直下にある三瓶雲南降下軽石層は,三瓶火砕流堆積物に先駆けて噴出した広域テフラで,島根 県東部各地に分布しており(林・三浦, 1986),島根県東部における第四系対比の数少ない鍵層の一つと なっている.

Ⅲ. 後期白亜紀-古第三紀火成岩類

(松浦浩久)

本地域の後期白亜紀-後期第三紀火成岩類は地域南部に広く分布しており,古い方から順に,佐津 「 火山岩類,野城花崗岩, 八神火山岩類, 石見花崗岩,岩脈に区分される. 佐津目火山岩類は後期白亜紀 の珪長質火砕岩を主体とする地層である. 野城花崗岩は暁新世の中粒花崗岩で代表される深成岩,八神 火山岩類は暁新世ないし始新世の珪長質火砕岩を主体とする地層である. また,石見花崗岩は,細粒花 崗岩で代表される始新世ないし漸新世の深成岩である.

Ⅲ.1 佐津目火山岩類 (Sdp, Srp)

地層名 新称.

模式地 佐田町佐津目から加賀谷にいたる伊佐川沿い.

分布及び層厚 多伎町奥田儀から大田市佐津目を経て佐田町窪田にいたる東西6km,南北3kmの範囲に分布する.このほかに,佐田町の豊田,高津屋及び八幡原にもわずかながら分布する.層厚は約1,100m以上.

層序関係本火山岩類は、南西縁を野城花崗岩に、南東縁を石見花崗岩に貫かれ接触変成作用を被っている.また、中新世の川合層及び久利層に覆われる.下限は不明.

増相 デイサイト溶結凝灰岩及び砂岩,泥岩,細礫岩からなる岩相(Sdp)と,流紋岩溶結凝灰岩から なり前者と一部指交しこれを広い範囲で覆う岩相(Srp)とがある.いずれもホルンフェルス化し黒雲母 や角閃石,斜長石,カリ長石,石英などが生じているが,溶結凝灰岩のユータキシティック構造など, 原岩の構造は部分的によく残っている.

デイサイト溶結凝灰岩は暗緑色-暗灰褐色を,流紋岩溶結凝灰岩は灰色-灰白色を呈する.この色調 の違いは,接触変成作用で生じた黒雲母や角閃石の量によるもので,前者は後者よりも多くの黒雲母や 角閃石を含む.

デイサイト溶結凝灰岩は、主として、基質と、長さ2-4cm、厚さ1-5mmの本質ガラスレンズから

なり,径2mm以下の斜長石,石英,有色鉱物(仮像)の斑状結晶を少量含む.本質レンズは明瞭な面構 造をなす.基質は,再結晶してもとの構造は判然としないことが多いが,部分的にユータキシティック 構造が認められることがある.デイサイト溶結凝灰岩の分布は断続的で,火山砕屑性の砂岩,泥岩,細 礫岩と指交する.

流紋岩溶結凝灰岩は, 径3-5mmの石英, 斜長石, カリ長石と, 径1-2mmの黒雲母(仮像)を多量に 含む点でデイサイト溶結凝灰岩と異なる. 多伎町宮本付近では径1-5cm, 厚さ1-10mmの本質レンズ と基質のユータキシティック構造が明瞭である(第4図)が,石見花崗岩との接触部に近い佐田町加賀谷 では変成が進んでいるためか, 一見塊状で, あたかも石英斑岩のように見える. 本火山岩類の流紋岩溶 結凝灰岩は, 南隣三瓶山地域及びその南方の赤名地域に分布する邕智層群の市井原層(松田・小田, 1982)の流紋岩溶結凝灰岩に岩相が似ている.

Ⅲ.2 野城花崗岩 (Gdn, Gpn, Grn)

岩体名 服部ほか(1983)が乙原花崗岩野城岩体と呼んだ岩体であるが、乙原花崗岩の模式地である邑 智町乙原(三瓶山地域)から遠く隔絶していることと、模式の乙原花崗岩にくらべて放射年代値がやや若 く岩相が異なることから、本報告では、乙原花崗岩から独立させて扱う.また、野城岩体の周辺に点在 し岩相が類似した小岩体は時代やほかの岩体との関係も不明ではあるが、記載の便宜上一括して本岩体 に含める.

模式地 大田市大田町野城周辺.

第4図 佐津目火山岩類流紋岩溶結凝灰岩の顕微鏡写真

分布 本地域南部と三瓶山地域にまたがり、大田市大田町から富山町、山口町、三瓶町北部に至 る東西約11km,南北7kmの範囲に分布する.また、佐田町高津屋川上流部、高津屋北東、窪田北西、 毛津本郷、上畑、八幡原に点在する.

層序関係・貫入関係 多伎町蔵谷南方 - 中組で佐津目火山岩類に貫入し,これをホルンフェル ス化させている.本岩体の東縁と南縁で石見花崗岩に貫かれる(服部ほか,1983).また,中新世の 川合層久利層に覆われる.

岩相 主岩相は中-粗粒白雲母含有黒雲母花崗岩(Grn)で,斑状細粒白雲母含有黒雲母花崗岩及び文 象斑岩(Gpn)と石英閃緑岩及びトーナル岩(Gdn)の小岩体を伴う.塩基性包有物をほとんど含まない.

中-粗粒白雲母含有黒雲母花崗岩は、場所によって構成する白雲母の大きさや、量、産状が異なり、 しばしばミアロリティックな空隙を伴う.白雲母の少ない部分での白雲母の粒径は肉眼で見えないほど 小さい.白雲母の多い部分では、径5mmに達する板状結晶が点在するほか、ミアロリティックな空隙 中に放射花弁状の集合体をなしていることもある.白雲母とともに本岩を構成するカリ長石は普通は径 3-10mm であるが、三瓶町野城や多根、長沢などでは径 2-3cmの斑状結晶をなしている.石英は肉眼 で見ると径 2-7mm の丸い高温型の外形を示すが、鏡下で観察するとしばしば外側に樹枝状の突起を出 してカリ長石と連晶をなしている(第5図).黒雲母は径 1-2mm で、鏡下ではY≒Z=褐色を示す.

斑状細粒白雲母含有黒雲母花崗岩及び文象斑岩(Gpn)は、径0.5-1km 程度の小岩体をなして大田町 出口,三瓶町下多根,山口町渡瀬などに分布している.主岩相とは漸移関係にある.径1mm以下の石 基中に径2-3mmの自形石英と黒雲母(緑泥石化),及び他形のカリ長石と白雲母の斑晶を含む.カリ長 石の多くは細い石英との連晶による斑文象組織をなす(第5図).副成分鉱物として,不透明鉱物,ジ ルコン,ザクロ石を含む.

石英閃緑岩及びトーナル岩(Gdn)は、径200-300mの捕獲岩状小岩体をなして三瓶町長沢西方と野城 北方に分布している.長沢の岩体は石英閃緑岩で、斜長石(径0.5-3mm)、角閃石(長径0.2-1mm, Z= 茶色)、単斜輝石(径0.1-0.5mm)、不透明鉱物、石英と、少量の緑泥石、緑れん石、スフェン、アパタ イトなどからなる.野城北方の岩体はトーナル岩で、主に斜長石(径0.1-0.5mm)、石英(径0.1-1mm)、 黒雲母(径0.1-0.2mm大部分緑泥石化)からなり、不透明鉱物、緑れん石、スフェン、アパタイト、ジ ルコンを含む.

放射年代 白雲母及び黒雲母のK-Ar 年代としてそれぞれ56.1±2.8Ma, 34.5±1.7Maの値が服部ほか(1983)によって報告されている.このうち,後者の試料は石見花崗岩との接触部に近いところから採取されており,その年代値は熱の影響で若返っていると考えられる.

Ⅲ.3 八神火山岩類 (Trp, Trdp)

地層名 沢田(1978a)命名.高山層群を構成する火山岩類の一つ(服部ほか,1983).服部ほか(1983) は、三瓶山地域内の高山火山岩類、連水火山岩類、湯抱川火山岩類及び本火山岩類を一括して高山層群 と呼んだ.

模式地 南隣の三瓶山地域内の頓原町志津筧東方の沢.

分布及び層厚本地域南東部から南隣の三瓶山地域内北東部にかけてと,三瓶山地域東部から南東隣の木次及び頓原地域内にかけて分かれて分布する.本地域内では頓原町志津見北方から佐田町上橋波・吉野に分布する.層厚は800m以上(服部ほか,1983)と見積もられているが,本地域内にはその上半分の約400mが分布する.

第5図 野城花崗岩の中粒白雲母含有黒雲母花崗岩(上の写真)及び文象斑岩(下の写真)の顕微鏡写真

層序関係 南隣の三瓶山地域内で野城花崗岩相当の下力根岩体を不整合に覆う(沢田, 1978a;服部ほか, 1983).本地域内では佐田町上橋波で石見花崗岩に貫かれ,吉野南方で波多層に不整合に覆われる. 上橋波では石英斑岩に貫かれる.

岩相本地域内に分布する八神火山岩類は,溶結構造と堆積構造から見てその上部を構成すると考えられる.主に流紋岩 - デイサイト溶結凝灰岩(Trdp)からなり,その下部に石英斑状流紋岩溶結凝灰岩が卓越する岩相(Trp)をともなう.全体に石見花崗岩の接触変成を被り再結晶しているが,接触部から離れたところではユータキシティック構造が明瞭に認められる.

流紋岩-デイサイト溶結凝灰岩は本質レンズや異質岩片に乏しい流紋岩ないしデイサイトの溶結凝灰 岩の重なりである. 再結晶しているために構成鉱物から原岩の組成がデイサイトであるか流紋岩である かを判定することは難しい場合が多い. 佐田町吉野南東地域の岩石は, 再結晶の程度が比較的軽微で, 灰緑色を呈する基質中に径1-2cm, 厚さ2-5mmの緑色本質レンズと暗緑色の径1-2cmの異質岩片 を含む. 鏡下では斑状結晶として径0.3-2mmの斜長石が多い. また径0.5-1mmの石英及び変質有色鉱物(角 閃石?)を少量含む. 基質には再結晶した微細な珪長質鉱物と径0.05-0.1mm 位の緑褐色黒雲母, 不透 明鉱物, アパタイト, 緑泥石が認められる. 構成物から, この岩石の組成はデイサイト質と考えられる.

石英斑状流紋岩溶結凝灰岩は、石見花崗岩と直接接しており、灰白色塊状の紅柱石白雲母ホルンフェ ルス、または、白濁して白雲母と石英の微結晶からなる斑状変質岩になっている.このような岩石では 肉眼でも顕微鏡下でも原岩の組織が全くわからなくなっている場合が多いが、部分的には溶結構造が保 存されており、そのような場所では引き延ばされた本質レンズや径 5-8mmの石英斑状結晶が肉眼で認 められる.斑状結晶としては石英のほかに、カリ長石、斜長石及び黒雲母が認められる.接触変成によ る鉱物としては珪長質鉱物のほかに、緑れん石、白雲母、紅柱石、電気石及び黒雲母が認められる.

放射年代 ジルコンのフィッショントラック年代として 45Ma (Matsuda, 1982), 全岩 K-Ar 年代として 25-30Ma (沢田・板谷, 1987)の値が報告されている.後者の年代値は本火山岩類に貫入する石見花崗岩の年代値(31-38Ma)よりも若いので若返りしていると考えられる.前者の年代値は,野城花崗岩や石見花崗岩のK-Ar鉱物年代に矛盾はしないが,測定方法が現在の改善された方法(Danhara et al., 1991)と異なるのでその妥当性についてはあらためて検討する必要がある.

Ⅲ.4 石見花崗岩 (Gri, Grdi, Gdi)

岩体名 吉田(1961).沢田(1978a)の新期花崗岩類のE1は本花崗岩に相当する.

模式地 三瓶山地域内の邑智町石見.

分布 本地域内では南東部の佐田町窪田から上橋波を経て大田市山口町佐津目に至る地域に分布する.また,本地域南西部の大田市牛尻南方から,南隣の三瓶山地域を南北に貫き,更にその南の赤名地域北部に達する広い範囲に分布する.南北延長は約28km,東西方向の幅は本地域内では佐津目と上橋波との間の広い所で約4kmであるが,南隣の三瓶山地域内では約14kmに広がる.

層序・貫入関係 佐津目火山岩類,野城花崗岩及び八神火山岩類に貫入し,接触部近くではこれらを 捕獲している.また被貫入岩に対して接触変成作用と変質作用を与えている. **岩相** 石見花崗岩は、細粒黒雲母花崗岩(Gri)を主体とする深成岩体で、その中に細粒石英閃緑岩ないしトーナル岩(Gdi)と細粒角閃石黒雲母花崗閃緑岩(Grdi)が混在している。南隣の三瓶山地域を調査した服部ほか(1983)は、同様に、石見花崗岩を主岩相、酒谷トーナル岩及び混成岩の三つに区分している。細粒黒雲母花崗岩(Gri)は服部ほか(1983)の石見花崗岩の主岩相に、細粒石英閃緑岩ないしトーナル岩(Gdi)は服部ほか(1983)の酒谷トーナル岩に、細粒角閃石黒雲母花崗閃緑岩(Grdi)は同じく混成岩にそれぞれ相当する。これら三つの岩相はいずれも細粒で一般に著しく変質しており、新鮮な有色鉱物は部分的にしか残っていない。

本地域内に分布する上記三つの岩相のうち,細粒角閃石黒雲母花崗閃緑岩(Grdi)は主岩相の細粒黒雲 母花崗岩(Gri)を取り巻いて分布しているように見える.しかし,その外側では細粒黒雲母花崗岩(Gri) がこの細粒角閃石黒雲母花崗閃緑岩(Grdi)を取り巻くように分布し,南隣の三瓶山地域へと続く.しか も,三瓶山地域では,細粒角閃石黒雲母花崗閃緑岩(Grdi)相当の岩相は径0.5-3km程の広がりを持っ て主岩相中に不規則に散在しており,岩体全体では累帯構造を持っていない.

細粒黒雲母花崗岩(Gri)は白色で、多くの場合径0.3-1mmの細粒結晶からなるが、時に径2-4mm の石英、カリ長石及び斜長石を斑状に含む. 佐津目火山岩類及び八神火山岩類に接する付近では結晶の 径が0.1mm 程度と微細になり、一見珪長岩ないし流紋岩の様相を呈する. 主として石英、カリ長石、 斜長石からなり、径0.1-0.5mmの黒雲母を少量含む. カリ長石にはマイクロクリン構造が発達し、細 い糸状のパーサイトを含む. 石英とカリ長石はしばし微文象構造をなし、著しい場合には文象斑岩状を 呈する. 副成分鉱物として不透明鉱物、ジルコン及びアパタイトを含む. 部分的には白雲母を含むこと がある.

細粒石英閃緑岩ないしトーナル岩(Gdi)は, 佐田町上橋波, 頓原町志津北部,山口町藤木谷で岩脈を なして分布している.また,山口町獺越西では細粒角閃石黒雲母花崗閃緑岩(Grdi)中に捕獲岩状に分布 している.いずれも暗緑色を呈し緻密である.主に,長径0.5-2mmのやや細長い卓状斜長石と,径0.2 -1mmの石英や変質して緑泥石化した角閃石,黒雲母からなる.副成分鉱物として径0.1mm以下の不 透明鉱物,スフェン,アパタイト及びジルコンを含む.角閃石や黒雲母は緑泥石に,斜長石は緑れん石 などに置換されている.

細粒角閃石黒雲母花崗閃緑岩(Grdi)は、灰色、時に肉紅色を呈し、径10cm-数mの細粒石英閃緑岩 ないしトーナル岩の岩塊を捕獲している.細粒黒雲母花崗岩(Gri)や細粒石英閃緑岩ないしトーナル岩 (Gdi)よりも変質が進み、方解石や白雲母、緑れん石を多量に生じていることがある.主に、径2-4 mmの斜長石や石英の斑状結晶と、径0.1-1mmの斜長石や石英、カリ長石、黒雲母(Y ≒ Z = 茶褐色)、 角閃石(Z=緑色ないし帯褐緑色)のやや小さな結晶とからなり、副成分 鉱物として、スフェン、不透明 鉱物、ジルコン、アパタイトをほかの岩相よりもやや多く含む.

放射年代 黒雲母のK-Ar 年代として 31.6 ± 1.6Ma (服部ほか, 1983), 白雲母のK-Ar 年代として 31.5 ± 1.6及び 31.2 ± 1.6Ma (松浦, 1989)の値が報告されている. 一方, ジルコンのフィッショントラック 年代として 38Ma (Matsuda, 1982)及び 16-20Ma (服部ほか, 1983)の値が報告されている. これらの値 は上記二つの K-Ar 放射年代値とはかけはなれている. そこで, 服部ほか(1983)の黒雲母 K-Ar 年代測 定試料を採取した同じ露頭(三瓶山地域内, 頓原町才谷)の試料(R20839)について, 新たにジルコンの

フィッショントラック年代を測定した結果(第6表),ジルコン結晶のうち表面状態が良くない粒子を除いて計算した年代値として 35.9 ± 2.0Ma が得られた. この測定は外部ディテクター(ED2)法(Danhara et al., 1991)よるもので,旧来の再エッチング法による値(Matsuda, 1982;服部ほか, 1983)よりも白 雲母及び黒雲母の K-Ar 年代値に近い値が得られた.

Ⅲ.5 岩 脈

以上の後期白亜紀-古第三紀火成岩類の中には、それらを貫いてはいるが定置時期を特定できない花 歯閃緑斑岩(Gdp)や、石英斑岩及びアプライト(Qp)、マイクロダイオライト(d)の岩脈が認められる. 貫入の時代は明らかではないが、これらの岩石に対比できる岩石は新第三系中になく、定置時期は新第 三紀以前と考えられるので、すべて始新世-漸新世の岩脈として一括し、以下に記載する.

Ⅲ.5.1 花崗閃緑斑岩(Gdp)

本岩脈は多伎町奥田儀宮本東方の沢沿いで、後期白亜紀の佐津目火山岩類に北北西-南南東方向に貫 入している.最大幅約200m,延長約1.4kmと推定される.暗緑色を呈し、径3-10mmの白い斜長石 及び石英,カリ長石斑晶と石基とからなる.石基には変質した径0.3-2mmの有色鉱物(角閃石?)と、 モザイク組織をなす珪長質鉱物とが認められる(第6図).このほかに長径0.1mm以下のジルコンとア パタイトを少量含む.石基のモザイク組織は、本岩が母岩の佐津目火山岩類とともに近接する野城花崗 岩による接触変成を受けたことを示唆する.

Ⅲ.5.2 石英斑岩及びアプライト(Qp)

石英斑岩及びアプライト岩脈は、多伎町奥田儀から大田市富山町長沢にかけての地域と、佐田町下佐 津目及び上橋波に分布する.奥田儀から長沢にかけての地域では野城花崗岩及び佐津目火山岩類を南北 方向に貫いているが、佐田町佐津目及び上橋波では佐津目火山岩類または石見花崗岩を北東-南西方向 に貫いている.脈幅は5mないし100m. 灰白色の石基中に径1-3mmの石英と白色長石の斑晶が目立 つ斑状のものから斑晶と石基との差異がほとんどないアプライト質のものまである.斑晶は自形の石英、 カリ長石、斜長石で稀に径mm以下の黒雲母を含むものがある.石基は完晶質で、針状の珪長質鉱物が 径0.2-0.3mmの球顆状の組織を示す. 珪長質鉱物のほか、不透明鉱物、アパタイト及びジルコンを含む.

第6表	石見花崗岩のフ	1 7	ショント	トラッ	ク年代測定結果
-----	---------	-----	------	-----	---------

試料名	測定鉱物	結晶数*	自発核分裂片飛跡	誘発核分裂片飛跡	熱中性子線量	年代値
R20839	ジルコン	29個	2.65×10 ⁶ cm ⁻² (1,078個)	1.96×10 ⁶ cm ⁻² (800個)	7.17×104 cm ⁻² (1,062個)	35.9±2.0 Ma

測定者:京都フィッショントラック(株) 壇原 徹 測定法:外部ディテクター (ED2)法 (Danhara et al., 1991). ζED2=371±5 エッチング条件: KOH:NaOH=1:1, 227℃, 30時間 * 30個のうち,1個を除外

-27 -

第6図 花崗閃緑斑岩岩脈の顕微鏡写真

Ⅲ.5.3 マイクロダイオライト(d)

マイクロダイオライト岩脈は野城花崗岩中に多数貫入している.多くの場合,脈幅は0.5-1mである が,大田市三瓶町多根周辺では幅約20mに達するものがあり,数も増える.岩脈の方位は北北西-南 南東ないし南西-北東方向と東北東-西南西ないし北東-南西方向が卓越する.変質が進んで褐色粘土 や暗緑の緑泥石に置換されていることが多い.

大田市三瓶町上野城北には灰緑色の新鮮な部分を残す岩脈がある.この岩石は、長径 0.5-2mm の短 冊形自形の斜長石と、その間を充たす径 0.1-0.3mmの単斜輝石とからなるサブオフィティック組織を 示す.稀に角閃石(Z=茶褐色)を含む.またアパタイトを比較的多量に含む.変質鉱物として緑泥石の ほかに緑れん石、スフェン、微粒不透明鉱物集合体を生じている.

本岩に類似したマイクロダイオライトは島根県東部に広く分布する野城花崗岩相当の古第三紀前期中 - 粗粒花崗岩や花崗岩閃緑岩中に限って多数貫入している(服部ほか, 1983;松浦, 1990).

Ⅳ. 新第三系

本地域の新第三系は、古い方から順に、波多層、川合層、久利層、大森層、布志名層、神西層に区分

される. 波多層,川合層, 久利層及び大森層にはドレライト, 玄武岩, ひん岩, 安山岩 - デイサイト, 石英斑岩, 流紋岩などが岩株, シルまたは岩脈として貫入している. これらの貫入時期はいくつかに分 かれており,また,必ずしも特定できないので,本報告ではこれらを前期 - 中期中新世の貫入岩として 一括して記載する. ただし, 溶岩に連続するなど貫入時期が直接判断できるものについては, それらが 属する層の火山岩として扱う.

波多層は、陸上あるいは陸水域に噴出した溶岩火砕岩からなる前期中新世の火山岩層である.川合層 と久利層は、それぞれ砂岩礫岩、泥岩で特徴づけられる前期中新世の後期ないし中期中新世の前期の海 成層で、安山岩やデイサイト、流紋岩の水底溶岩火砕岩を挟む.両層は一部指交関係にある.

大森層は川合層, 久利層などを不整合に覆い, 陸上ないし浅海に噴出した安山岩ないしデイサイトの 溶岩火砕岩とそれらの砕屑物とからなる中期中新世中期の地層である. 布志名層は, 礫岩, 砂岩及びシ ルト岩からなる中期中新世後期の浅海成層, 神西層は布志名層に引続き堆積した砂岩, シルト岩及び礫 岩からなる中期中新世後期ないし後期中新世前期の浅海成層で, 基底部にアルカリ玄武岩火砕岩(神西 玄武岩)を局所的に伴う.

以下に述べる新第三系の記述のうち、出雲湾入部の波多層、川合層、久利層、大森層及び貫入岩の記 述は沢田の調査と鹿野の補備調査に基づく.また、出雲湾入部と大田湾入部とを繋ぐ地域の調査は竹内 の調査と鹿野の補備調査に基づく.本報告での地層や岩体の区分や分布は沢田(1978a)と異なる点があ るが、それは鹿野の判断による.第8表に示す石見大田地域東部(出雲湾入部)の新第三紀火山岩の岩石 記載と化学分析値は沢田順弘の、全岩K-Ar年代測定値は沢田順弘・板谷徹丸の未公表資料による.ま た、表の末尾に掲げる6試料の化学分析値と全岩K-Ar年代測定値は宇都ほかの未公表資料による.こ の記載によれば、当該地域の新第三紀火山岩のうち、川合層久利層のものはソレアイト系列、大森層 の安山岩ないし苦鉄質デイサイトはソレアイト系列、珪長質デイサイトはカルクアルカリ系列に属する ものが多く、神西層の玄武岩はアルカリ系列に属する(第7図).

IV.1 波多層 (Hd, Ha)

(鹿野和彦・沢田順弘)

地層名 通商産業省(1967)は、今村ほか(1958)の波多亜層群のうち、川合層の砂岩礫岩と指交する鍋 ⁴⁴ 山層(Mukae, 1958;岡本, 1959)にほぼ相当する地層を除いて、これを波多層と改名し、再定義した. 今村ほか(1958)をはじめとする当時の研究では、先新第三系を不整合に覆い、溶岩火砕岩を主体とする 地層を波多亜層群(今村ほか、1958;Mukae, 1958;岡本、1959)とし、その上の砂岩礫岩を主体とする 地層、すなわち川合層と区別している.また、Mukae(1958)及び岡本(1959)は、波多亜層群のうち、川 合層の砂岩礫岩を主体とする地層の直下にあって、砂岩、炭質頁岩などと安山岩やデイサイト、流紋岩 の溶岩火砕岩とが指交する地層を鍋山層、その下の安山岩やデイサイト、流紋岩溶岩火砕岩からなる地 層を波多火山岩類と呼び、これらを区分している.沢田(1978a,b)は、鍋山層、波多火山岩類にほぼ相 当する地層をそれぞれ大名果層、波多亜層群と呼び、波多亜層群を不整合に覆い、川合層に漸移する地

-29 -

(三浦, 1973, 1974)を基に作成、アルカリ岩と非アルカリ岩との境界は Miyashiro(1978), ソレアイト岩とカルクアルカリ岩との境界は Miyashiro(1974, 1978)による

層として大呂累層を位置づけた.また,波多亜層群を吉田複合岩体,入間累層,穴見累層に分け,さら たつき に入間累層を成砕屑岩層,松笠火山岩層,八重山安山岩層に,穴見累層を兜山安山岩層,寺谷安山岩 層,柄栗石英安山岩層に細分した.通商産業省(1967)は,大呂累層を川合累層と指交し,火山岩類が卓 越する同時異相と考え,これを川合層に一括している.本報告では,通商産業省(1967)の定義に従う. 模式地 厳密には定められていない.一般に,出雲市南方の飯石郡掛合町波多(旧波多村)一帯と考え

模式地 厳密には定められていない.一般に,出雲市南方の飯石郡掛合町波多(旧波多村)一帯と考え られている.
分布及び層厚 本地域の南東部から隣接地域にかけて広く分布する.最大積算層厚は1,500mである (沢田,1978a).本地域内には波多層のうち,上限から層厚にして500mの範囲が分布している.

層序関係 八神火山岩類を不整合に覆い,川合層及び大森層に不整合に覆われる.島根半島の古浦層 に対比される(鹿野,1991;鹿野ほか,1993).

増相 デイサイト火砕流堆積物を主とし、デイサイト溶岩を挟む.本地域南隣の三瓶山地域内では、より下位の層準に安山岩を伴う.デイサイト火砕流堆積物は、緑色-淡褐色粘土鉱物や炭酸塩鉱物、緑れん石などに置換された火山灰ガラス、長さ数 cm 以下の緑色レンズ(粘土化した軽石火山礫)、長さ1 mm 内外の斜長石や石英斑晶、長さ0.5mm 以下の緑泥石に置換された角閃石のほか、径数 mm-数 cm のデイサイトや安山岩、同質凝灰岩の岩片を含む.それぞれの火砕流堆積物の厚さは数 10m で、基底付近にはより多くの岩片を含む凝灰角礫岩が、最上部には軽石や岩片をほとんど含まない、淘汰のよい 成層した凝灰岩が認められる.主部は、ほとんど例外なく溶結しており、径数 cm-数 10 cm のガス抜けパイプが認められることがある.

デイサイト溶岩は塊状で,部分的に流理構造が認められる.多くの場合,無斑晶質で,まれに普通輝石が認められる.変質が著しく詳しい性状は判然としない.

化石 報告されてない.

放射年代 最上位の柄栗石英安山岩層の溶結凝灰岩のジルコンのフィッショントラック年代値は,26.9 ±6.2Ma(鹿野・吉田,1984)とされていたが、今回、あらためて同じ露頭から採取した試料について測 定した結果,18.4±1.2Maの値が得られた(第7表).この値は、波多層を貫く野田山複合岩体(沢田, 1978a)の黒雲母K-Ar 年代値18.0±1.3 Ma(鹿野・吉田,1984)に矛盾しない.

IV.2 川合層 (Kws, Kwa, Kwd, Kwr, Kwp)

(鹿野和彦・竹内圭史・沢田順弘)

地層名 今村ほか(1958)命名.本報告では,沢田(1978a)の大呂累層と川合累層とが指交関係にある と考え,通商産業省(1967)にならって,両層を一括して川合層とする.

模式地 厳密には定められていない.一般に,大田市川合町付近と考えられている.竹ノ内ほか (1982)は,大田市忍原の忍原川とその支流に沿って川合層からその上位の久利層まで比較的良く連続し

試料名	測定鉱物	結晶数	自発核分裂片飛跡	誘発核分裂片飛跡	熱中性子線量	年代値
O-176	ジルコン	30個	6.46×10 ⁵ cm ⁻² (460個)	1.06×10 ⁵ cm ⁻² (755個)	8.12×104 cm ⁻² (1,250個)	18.4±1.2 Ma

第7表 波多層柄栗デイサイト層のフィッショントラック年代測定結果

測定者:京都フィッショントラック(株) 壇原 徹 測定法:外部ディテクター (ED2) 法 (Danhara et al., 1991). ζED2 = 372±5 エッチング条件: KOH:NaOH = 1:1, 225℃, 32時間 て露出していることから、これを模式ルートとして推奨している.

分布及び層厚本地域南部の先新第三系を取り囲むように広い範囲にわたって点在する. 層厚は最大で400-500m.

層序関係後期白亜紀-古第三紀火山岩類及び波多層を不整合に覆い, 久利層と一部指交する. 島根 <sup>
にようでし</sup> 半島の成相寺層下部に対比される(鹿野, 1991; 鹿野ほか, 1993).

増相 砂岩及び礫岩(Kws),安山岩 - デイサイト溶岩及び火砕岩(Kwa),デイサイト火砕岩(Kwd), デイサイト - 流紋岩溶岩及び貫入岩(Kwr),流紋岩火砕岩(Kwp)などからなる.これらは,地域によっ てお互いに層位が入れ替わるので指交関係にあると考えることができる.

砂岩及び礫岩(Kws)を構成する砂岩は粗粒-中粒でアルコース質のものと中-細粒で凝灰質のものと がある.塊状または級化したのものが多いが,平行ないし波状または低角の斜層理や葉理が明瞭なもの もしばしば認められる.まれに炭質物を挟むことがある.礫岩は様々な程度に円磨された安山岩や花崗 岩,珪長質火砕岩の小-大礫とアルコース質または凝灰質砂の基質とからなり,砂岩や珪長質凝灰岩と 互層する(第8図).

安山岩 - デイサイト溶岩及び火砕岩(Kwa)を構成する溶岩は安山岩で,佐田町東村周辺や大田市富山 町才坂の例(第8表:HKW-2,HKW-3,0D7-8)のように,ガラス質で斜長石と普通輝石,斜方輝石, 磁鉄鉱などの斑状結晶を含み,同種の微結晶がガラス(仮像)の中に流状または填間状に分布しているこ とが多い.しかし,佐田町八幡原から川北上にかけて分布する溶岩は安山岩に近い組成の斑状または無

第8図 川合層の砂岩礫岩 佐田町原川から毛津に至る道路沿い。砂岩はかすかに平行葉理が見える。礫岩は写真の右上から左下へと続く砂岩との境界に沿って下位の砂岩をわずかながら削り込んでいる。礫の多くは良く円磨された安山岩の細-中礫である。スケールの刻みは1cmまたは1inch単位

斑晶質のデイサイトである. 斑状のデイサイト(第8表:HKW-19)は、斜長石や普通輝石,斜方輝石, 磁鉄鉱の斑状結晶と,斜長石,普通輝石,磁鉄鉱,アパタイトなどの微結晶,そしてガラス(仮像)から なり、填間状組織を示す. 無斑晶質のデイサイト(第8表:HKW-2)は、ごく少量の斜長石の斑状結晶 と,斜長石や普通輝石,変質した苦鉄質鉱物,オパサイトなどの微結晶,及びガラス(仮像)からなる. 一方,佐田町東村受地の沢沿いに分布する黒色 - 暗緑灰色溶岩(HKW-1,第8表)は斑状填間状組織を なす玄武岩で,斜長石,カンラン石(仮像),斜方輝石,普通輝石の斑状結晶と,斜長石や普通輝石,斜 方輝石,ピジョン輝石,磁鉄鉱の微結晶,ガラス(仮像)からなる.一部のカンラン石は斜方輝石,普通 輝石に包有され,斜方輝石の反応縁をもつ.デイサイトは共に産する安山岩との野外での区別は難しく, また,玄武岩はまれなので,これらの岩石は地質図ではとくに区別することなくほぼ同層準にある安山 岩溶岩火砕岩に一括した.

安山岩-デイサイト溶岩及び火砕岩(Kwa)を構成する溶岩の主部は塊状で板状節理が発達し、その上下に同質の火山角礫岩(フローブレッチャ)を伴う.火山角礫岩には赤色の酸化皮膜はほとんどない.安山岩火砕岩の多くは,塊状または逆級化ないし正常級化した火山礫岩と平行ないし波状層理の発達した凝灰岩とからなる厚さ数10cm-数mのサージ様堆積物で、その主たる構成物は、様々な程度に発泡した安山岩や斜長石などの結晶片である.佐田町原川から東山中にかけての地域では火砕岩に比べて溶岩が多く級化成層した安山岩火砕岩を局所的に挟みながら厚さ10-30mの安山岩溶岩がその再移動物とともに幾重にも重なっている様子が観察できる(第9図及び第10図).一方、大田市富山町山中から多伎町田儀にかけての地域では、火砕岩が卓越し、溶岩はほとんど認められない.

デイサイト火砕岩(Kwd)の多くは、火山ガラスと繊維状の軽石、斜長石などの結晶片からなり、級化 成層した厚さ数mの凝灰角礫岩 - 凝灰岩である.高温で堆積した証拠はなく、しばしば再移動した安 山岩火砕岩や凝灰質砂岩泥岩などを挟むことから水底に堆積した火砕流起源の重力流堆積物あるいはそ れらの再移動物と考えることができる.

デイサイト-流紋岩溶岩及び貫入岩(Kwr)は、ガラス質ないし微晶質で不明瞭ながら流理構造を示し、

佐田町原川から毛津に至る道路沿い

第9図 川合層の安山岩溶岩火砕岩柱状図 佐田町原川から毛津に至る道路沿い及び佐田町吉野

			Τ									化		学		趄		威							斑		8
試料番	号	試料採取地点	1 1		屠	ž	ŝ	体	名	SiO2	TiOz	Al2O:	Fe2Os	MaO	MgO	CaO	Na2O	K20	P2O5	Total	Qz	PI	01	Срх	Орх	Am	Bi
HKW-1*	•	佐田町東村受地	л	合	雕	玄	武	出る	1 岩	50.12	0.93	18.74	9.96	0.29	5.45	9.63	2.97	0.43	0.17	98.69		0	\diamond	0	0		
HKW-2*	•	佐田町東村萱野	л	含	層	安	ш :	迷ぎ	1 岩	57.81	1.07	16.59	9.36	0.25	2.51	6.35	4.17	1.39	0.23	99.73		0		0			Ó
HKW-3*		佐田町川南上	л	合	層	安	ш :	むぎ	1 岩	59.92	0.85	16.91	6.76	0.13	2.47	6.13	3.86	1.28	0.19	98.50		0		0	0		
HKW-9*	•	佐田町御幡	л	合	層	流	紋	범 淋	1 岩	70.84	0.70	14.71	3.67	0.08	0.22	3.17	4.79	1.43	0.25	99.86		0					
HKW-10	7	佐田町高津屋	Л	合	層	流	紋	8 1	岩	75.32	0.40	12.82	2.61	0.04	0.19	1.63	4.08	1.79	0.10	98.98		0					
HKW-19)+	佐田町川北下	Ш	合り	デ	1	41	' ŀ i	審岩	63.57	0.72	16.09	5.91	0.05	1.70	4.59	4.09	1.37	0.13	98.22		±					
HKW-23	•	佐田町川北上	JII.	合人	ŕ	1	41	' h i	8 岩	63.27	0.75	16.05	7.15	0.12	2.07	5.15	4.07	1.28	0.14	100.05		0		0			
HKW-13	•	佐田町黒山	1	利	層	流	紋	ii X	日岩	71.02	0.41	13.99	2.88	0.06	0.39	3.20	3.86	1.83	0.10	97.74		0					
HKW-14	•	佐田町川南上	×	森 /	<i>7</i>	1	サイ	` ŀ i	8 岩	65.61	0.53	15.45	6.15	0.11	2.30	5.13	3.34	1.01	0.10	99.73	0	0		0	破		
HKW-15	•	佐田町反辺	×.	森 /	デ	1	#1	ŀi	會 岩	65.66	0.46	14.93	4.89	0.06	1.75	4.68	3.55	1.44	0.09	97.51	0	0		0	\diamond		
HKW-16	•	佐田町朝原	×.	<u>ب</u>	7	1	サイ	11	8 岩	63.80	0.53	14.94	6.16	0.11	1.86	5.83	2.96	0.83	0.09	97.11		0		0	\diamond		
HKW-17	•	佐田町呑水	大	麻川	7	1	# 1	•	8 岩	66.63	0.66	15.13	5.61	0.13	1.52	5.10	3.56	1.21	0.16	99.71		0		0	0	-	
HKW-21	•	乙立町立久憲峡	大	麻川	7	1	サイ	11	8 岩	67.78	0.64	14.62	5.05	0.11	1.32	4.79	3.26	1.31	0.16	99.04		0		0	0		
OD7-7*		多位町多位下菅沢	大	*	層	安	山	31 1	;岩	60.30	0.80	17.49	6.98	0.17	2.74	6.41	4.24	0.85	0.26	100.24							
OD7-8*		大田市富山町才坂	大	業月	7	1	7	11	# 岩	59.00	0.89	17.14	7.15	0.15	2.66	6.63	3.44	1.02	0.23	98.31		微		微	微		
OMR6-3	•	乙立町立久恵峡	*	并月	 7	1	サイ	11	自岩	66.05	0.65	14.60	5.21	0.10	1.44	4.93	3.09	1.43	0.15	97.65		0		0	\diamond		0
HKW-18	•	佐田町東村萱野	苦食	失貨	1	く岩	安山	」岩	i r	56.51	0.91	17.93	8.87	0.15	3.50	6.06	4.48	0.76	0.23	99.40	0	0					
HKW-20	•	佐田町八幡	苦食	失貨	(賞)	、岩	安山	出出	シル	54.13	0.99	17.03	10.75	0.16	4.16	8.38	3.13	0.68	0.23	99.64		0	0	0	_	-	
0-4**		湖陵町畑村	大	森	層	安	山	苦油	岩	61.50	0.82	16.27	6.89	0.16	2.23	5.71	3.88	0.98	0.15	98.65		0		0	1		
0-53**		湖稜町常楽寺	大日	莱月	ア	1.	サイ	1	6 岩	68.11	0.73	14.15	5.24	0.14	1.14	4.16	3.66	1.53	0.21	99.07		0		0	±		
0-64**		出雲市上新宮	大	夈	層	安	山岩	111	岩	59.41	0.94	15.89	8.27	0.14	2.25	5.48	3.72	2.11	0.32	98.53		0		0			
O-68**	1	出集市上新宫南方	×	森	1	安	Шž	前海	岩	54.08	0.94	16.94	11.46	0.19	3.87	8.17	3.17	0.69	0.18	99.69		0		0			
0-47**	1	出集市東神西町	神西	挿	アル	カ 1	」玄道	大岩岩	塊	52.95	1.06	16.51	10.53	0.15	4.28	7.69	3.26	1.40	0.27	98.08		0	0	0			_
0-49**		出雲市東神西町	神西	1	アル	ガ !	」玄言	: 岩:	· n	50.61	1.81	15.95	8.61	0.10	4.97	8.63	3.13	2.89	0.84	97.50	捕	0	0	0	捕	0	
م) الا																											

第8表 石見大田地域東部の新第三紀火山岩の岩石記載,

 ・) 岩石記載・化学継点は沢田原弘の,K-Ar全岩年代は 沢田原弘・板谷撤丸の未公表資料による。
 ・) 化学分析値、K-Ar全岩年代は字都ほかの未公表資料による
 注) 試料採取地点は試料番号とともに地質図に示す

Glass	ガラス	Am	角閃石	0	存在
Qz	石英	Bi	瓢賞母		一部変質
Sic	珪酸鉱物	Mm	未詳苦鉄質鉱物	\diamond	仮像
Pl	斜長石	Mgt	磁鉄鉱	£	希
oi	かんらん石	Opc	オパサイト	櫢	徵选品
Срх	単斜輝石	D.	イルメナイト	蔽	破片状
Pig	ビジョン却石	Ap	アパタイト	赬	捕獲結晶
Орх	斜方鱓石	Zi	ジルコン		

斑晶として斜長石のほか,まれに普通輝石,角閃石(オパサイト)斑晶を含む.一部ドーム状に貫入して いる.また,ところによってジグソー割れ目が顕著で,水冷破砕を受けている可能性が高い.佐田町御 幡の流紋岩(デイサイト?)溶岩(HKW-9,第8表)は,斜長石のほか,苦鉄質鉱物(仮像),磁鉄鉱,ア パタイトの斑状結晶と,斜長石,珪酸鉱物,オパサイト,苦鉄質鉱物(仮像)の微結晶からなる.佐田町 高津屋の流紋岩溶岩(第8表:HKW-10)は,斜長石,オパサイト,苦鉄質鉱物(仮像),磁鉄鉱の斑状結 晶とガラス(仮像),斜長石,苦鉄質鉱物(仮像),アパタイト,磁鉄鉱,ジルコン,石英の微結晶からな る.

流紋岩火砕岩(Kwp)は、無層理塊状の凝灰岩で同質の斜長石流紋岩溶岩を伴うことがある。斜長石流 紋岩溶岩はデイサイト-流紋岩溶岩とよく似ており、肉眼で両者を見分けることは難しいことが多い.

化石本地域からは化石の報告がないが,東隣木次地域,南隣の三瓶山及び温泉津地域の川合層砂岩から多数の海生貝化石が産出する(岡本,1959;竹ノ内ほか,1982;岡本ほか,1971).また,木次地域 高窪炭田の川合層に挟在する凝灰質頁岩からは台島型植物群に対比される植物化石群が産出する(甲 藤・中村,1952;岡本,1959;北条,1964).三瓶山地域大田市忍原の川合層から産出する Vicarya cf.

-34 -

化学分析値及び K-Ar 全岩年代測定値

					<u> </u>	<u>π</u> ±														K-Ar全岩年代测定				
Mm	Mgt	n	Opc	Ap	Glass	Qz	Sic	р	о	Срх	Pig	Орх	Am	Bi	Mm	Mg	n	Opc	Ap	Zi	K (wt%)	Rad ⁴⁰ Ar (10 ⁴ ccSTP/g)	Non rad. ⁴⁰ Ar (%)	年代值 (Ma)
					\diamond			0		0	0					0					0.22±0.01	0.152±0.012	80.0	17.7±1.6
	0				0			0		0		0	-						0		1.19±0.02	0.795±0.007	28.8	17.1±0.4
	0				0			0		0						0					0.94±0.02	0.706±0.017	43.8	19.3±1.1
\diamond	õ			0	-		0	Ō							\diamond			0						
$\overline{\diamond}$	0		0			0		-								0			0	0				
<u> </u>	-		_		0	-		0		0					0			0			1.25±0.01	0.825±0.017	28.1	16.9±0.5
	0				0			Ō	-	0			-			0			0		1.03±0.02	0.507±0.005	25.5	16.6±0.4
$\overline{\diamond}$	_		0	0			-	ō								0	0	0	0					
				_		0		0							\diamond			0	0	0				
					\diamond	ō		0		0		?				0	0		0	0	1.02±0.05	0.580±0.013	42.2	14.6±0.8
			0		\diamond		<u> </u>	Ō			±	±				0			о	0	0.80±0.04	0.429±0.012	43.3	15.8±0.9
_	0			0	0			0		0						0								
	0				\diamond		-	0		0						0			0		1.10±0.06	0.615±0.032	73.5	14.3±1.1
					0			0		Ö								0						
			徵		0			0		0								0						
	0				\diamond			0										0	0	0	1.08±0.02	0.546±0.036	73.2	13.0±0.9
						0		0		0			0	0				0			0.35±0.02	0.191±0.011	70.4	14.0±1.1
					0			0		0	0					0					0.55±0.03	0.325±0.038	87.1	15.1±1.9
	0	_			\diamond			0		0					0						0.830	0.453	70.8	14.0±0.3
					0			0		0						0					1.27	0.666	54.4	13.5±0.2
_	0				0			0		0					0						1.77	0.977	28.9	14.2±0.2
_	0				\diamond			0		0						0					0.580	0.301	56.6	13.3±0.2
	0	0			\diamond			0	0	0					0						1.21	0.648	65.3	13.7±0.5
	0	0			\diamond			0	0	0			_		0						2.31	1.24	42.1	13.8±0.2

japonica, *Vicaryella* sp. などは、川合層が前期中新世後期に堆積したことを示唆する(竹ノ内ほか、1982). また、台島型植物群は、22Ma(鹿野・柳沢、1989)あるいは18Ma(植村、1989; Yamanoi、1992) 以降に出現した植物群と考えられている. 黄・岡本(1979),温泉津地域仁摩町立首及び東山から *Grobigerina adamantea*, *Orbulina universa* などの浮遊性有孔虫化石を報告し、これを産出した細粒砂岩 を Blow(1969)の浮遊性有孔虫化石帯N.10に対比している.

放射年代本地域南東部において沢田(1978a)が大呂累層とした 火山岩の全岩 K-Ar 年代値は15-19 Ma(第 VI-2表;沢田・板谷, 1987;Uto, 1989;Otofuji et al., 1991)で,上述の生層序から推定される 川合層の年代に矛盾しない.

第10図 川合層安山岩溶岩直上の塊状安山岩火山角礫岩 佐田町原川から毛津に至る道路沿い.ジグソー割 れ日の発達した径1m前後の岩塊(写真左下)をはじめとし、様々な大きさの安山岩角礫が重なり合ってい る.写真の縦の長さは約4m

IV.3 入利層 (Km, Ka, Kr, Kp)

(鹿野和彦・竹内圭史・沢田順弘)

地層名 今村ほか(1958)命名.

模式地 厳密には定められていない.一般に,大田市久利町付近と考えられている.竹ノ内ほか (1982)は,大田市忍原川とその支流に沿って川合層からその上位の久利層まで比較的良く連続して露出 していることから,これを模式ルートとして推奨している.

分布及び層厚 本地域南部の先新第三系及び波多層,川合層を取り囲むように広い範囲にわたって分 布する.層厚は大田市大田町から朝山町にかけて最も厚く,700-800m.

層序関係後期白亜紀-古第三紀火山岩類及び波多層を不整合に覆い、川合層と一部指交する. 島根 ^{によきうじ} 半島の成相寺層上部に対比される(鹿野, 1991;鹿野ほか, 1993).

増相 泥岩(Km),安山岩-デイサイト溶岩及び火砕岩(Ka),流紋岩溶岩及び貫入岩(Kr),流紋岩火砕岩(Kp)からなる.

泥岩(Km)は塊状暗灰色-黒色で、風化すると平板状またはレンズ状の細片になる. 久利層の基底付近や流紋岩火砕岩が卓越する地域では砂質または凝灰質で、しばしば極細粒砂岩や流紋岩凝灰岩を挟む.

安山岩 - デイサイト溶岩及び火砕岩(Ka)中の溶岩の多くは非顕晶質で、まれに反応縁をもった普通 輝石斑晶が認められる.しばしばジグソー割れ目が顕著で、同質の火山角礫岩に移化する.大田市大田 町の三瓶川南側では、溶岩の一部が直下の流紋岩凝灰岩に沈み込み、Kano (1991)が島根半島で記載し た枕状シルと同様に、枕状になり、さらにそれぞれの枕がジグソー割れ目に沿って分離している様子が 観察できる(第11図).火砕岩の多くは、様々な程度に発泡した安山岩 - デイサイトの岩片やスコリア ないし軽石火山礫とそれらの細片、斜長石などの結晶片からなる凝灰岩ないし火山礫凝灰岩である.厚 さは数m-数10mで、主部は塊状である場合と逆級化ないし正常級化している場合とがあるが、いず れの場合も最上部は平行 - 波状層理が明瞭で、主部より淘汰がよく細粒になっている(第12図).本岩 相が厚い大田市富山町とその周辺では、様々な程度に円磨された安山岩 - デイサイトの砂礫からなる砂 岩礫岩やデイサイト火砕岩ををしばしば挟み、また、火砕岩中には一部塑性変形した暗灰色 - 黒色泥岩の 岩塊が取り込まれており、ここでは、本岩相が久利層の泥岩や川合層の砂岩礫岩、デイサイト火砕岩と 指交していることがそれらの分布からも読みとれる(地質図参照).

流紋岩溶岩及び貫入岩(Kr)は非顕晶質の,いわゆる斜長流紋岩で,例えば,佐田町黒山を中心に分布 する流紋岩(第8表:HKW-13)は,斑晶は斜長石や変質した苦鉄質鉱物,磁鉄鉱,アパタイトの斑状結 晶と,斜長石,磁鉄鉱,チタン鉄鉱,アパタイトなどの微結晶,ガラス(仮像),隠微晶質(クリプト結 晶質)結晶からなる。流紋岩火砕岩や泥岩を貫きその上にドーム状に群をなして噴出していることが多 い.ところによって東北東-西南西方向の岩脈をなしていることもある.流理が明瞭で,それぞれの岩

第11図 久利層の安山岩シル 大田市大田町の三瓶川南側、ハンマーの左側と直下にある楕円形の断面を示す 塊に見られるように、安山岩は流紋岩凝灰岩に取り囲まれて枕状を呈する。それぞれの枕には放射状また は不規則な割れ目が発達し、それぞれの割れ目を流紋岩凝灰岩が埋めている。ハンマーの長さは約30 cm

20 法状-平行業項の発達した粗粒優妖岩 境状種石火山麋凝妖岩 ガラス質減枚岩火山磯-岩境(径5-60 cm) 火山妖に乏しいガラス質減枚岩火山磯岩 門層された火山嚢混じり凄妖岩と 軽石火山嚢凝妖岩との五層 慶石や液飲岩などの小嚢混じりの中粒砂岩

大田市長久町川南から鉱泉に至る道路沿い

第12図 久利層流紋岩火砕岩及び安山岩火砕岩柱状図 それぞれのフローユニットは,塊状ないし級化した 火山礫凝灰岩(主部)とこれに重なり,より細粒で成層した凝灰岩(成層部)とからなる 体の表面近くではジグソー割れ目が顕著で、角礫岩になっている.

流紋岩火砕岩(Kp)の多くは、塊状または正常級化した火山礫凝灰岩と、これに重なる、より細粒で 淘汰のよい凝灰岩とからなり、下部の火山礫凝灰岩には安山岩などの火山岩塊や火山礫がしばしば濃集 している(第12図).凝灰岩の部分は正常級化し、軽石や異質の火山礫の量比の違いで示される平行層 理ないし低角の斜交層理が明瞭である(第13図).これらは、高温で定置した証拠は保持していないの で重力流堆積物と考えるべきものであるが、ほとんど円磨されていない火砕物からなること、軽石が上 の方に濃集する傾向が認められること、まれにジグソー割れ目の明瞭な軽石岩塊が認められる(第14図) ことなどから、直接噴火に由来する可能性が高い.流紋岩火砕岩は泥岩のほか、しばしば流紋岩火砕岩 起源の砂岩を挟む(第12図).

化石 本地域西部から三瓶山地域,そしてその西隣の温泉津地域にかけて,泥岩から多数の有孔虫化 石が得られている(通商産業省,1967,1969,1970a,b,1971;金属鉱物探鉱促進事業団,1970,1971, 1972a,b;竹ノ内ほか,1982;野村,1986c).また,大田市朝山町国道9号線北側の崖に露出する泥岩 からワニトカゲギス目ギンハダカ科ギンハダカ属などの魚類化石が得られている(藪本・山内,1996).

底生有孔虫化石群集は本層の堆積環境が時とともに大陸棚から大陸斜面へと変化していったことを示 唆する(野村, 1986c). 久利層の堆積末期に堆積盆が浅くなったとする見解がある(多井, 1973a, b)が, 岩相を見る限りこれは確認できない. 多井・加藤(1979)は, 石見大田市朝山町の広域調査ボーリング 44EAKS-2(通商産業省, 1971)の試料から, *Globorotalia mayeri, G. peripheroronda, G. scitula praescitula, G. scitula scitula* を, また, 大田市大屋町(温泉津地域)周辺の広域調査ボーリング 43EASI-7, 43EASI-9, 43EASI-10, 45EASI-26, 45EASI-33(通商産業省, 1970a, 1971)の試料から, *Orbulina universa, Globorotalia* cf. *adamantea, G. myeri, G. siakensis, Sphaeroidinellopsis seminulina* などの浮遊性有孔虫化 石を報告し, これらが産出した久利層泥岩をBlow(1969)の浮遊性有孔虫化石帯N.10に対比している.

一方,すでに述べたように近接する仁摩町の川合層の砂岩の中に同様の浮遊性有孔虫化石が確認されている.したがって,これらのことは,久利層と川合層とは指交関係にあるする見解(通商産業省,1967,1969,1970a,b,1971ほか)を支持する.

東隣木次地域からは多数の海生貝化石と底生有孔虫化石が産出する(岡本・多井, 1957;岡本, 1959) が、本地域東部では詳しい検討はなされていない.

放射年代 大田市大屋町及び仁摩町宅野(温泉津地域)に分布する本層安山岩溶岩について,それぞれ, 14.8±0.6Ma及び15.5±1.0Maの全岩 K-Ar 年代値が得られている(Uto, 1989).

IV.4 大森層 (0d, 0a, 0p1, 0p2, 0p3, 0p4, 0c, 0s)

(鹿野和彦・竹内圭史・沢田順弘)

地層名 鹿野ほか(1991a)は、Tomita and Sakai(1937)の大森統と布志名統来待層を一括した地層を 大森層と再定義した.大森統安山岩の下位にあって礫岩を主とする地層、すなわちTomita and Sakai (1937)の大森層は来待層下部の礫岩が卓越する岩相に漸移しており、年代層序学的にも大森統と来待層

-39-

第13 図 久利層流紋岩火砕岩の産状 佐田町川北下から出雲市下原へ至る道路沿い。火砕サージ堆積物のよう に凝灰岩と軽石火山礫凝灰岩とが瓦層して(下の写真)低角斜交層理をなす(上の写真)。ハンマーの長さは 約30 cm,スケールの刻みは1 cm または1 inch 単位

第14 図 久利層流紋岩軽石火山礫凝灰岩中のジグソー割れ目が明瞭な軽石岩塊 大田市島井町島越の農 道沿い、スケールの左側にある三つの軽石岩塊は互いに密着し得るような外形をもって相接し、それらの 表面と内部には互いに直交する潮れ目が発達している、スケールの刻みは1em または1inch 単位

とをあわせた地層の堆積期間は極めて短く,おそらく50万年よりも短い(鹿野ほか,1991a).来待層と 大森統の安山岩とは構造的には不整合に見えるところが多い.しかし,これは,大森統の安山岩に由来 する砕屑物(来待層)が海進にともなって安山岩火山体周辺の海浜ないし浅海に堆積したことによる (Kano and Takeuchi, 1989;鹿野ほか,1991a)もので,来待層と大森統との間に大きな時間間隙がある ことを意味するものではない.本報告では,鹿野ほか(1991a)にならい,Tomita and Sakai(1937)の大 森統と布志名統来待層を一括した地層を大森層として扱う.

模式地 宍道町来待大森及び周辺地域.

分布及び層厚 久利層,川合層,波多層を不整合に覆つて海岸沿いに広く分布するほか,出雲湾入部 の湾奥の尾根沿いにも点在する.層厚は最大で900-1,200m程度.

層序関係 久利層,川合層,波多層及び後期白亜紀-古第三紀火成岩類を不整合に覆う.島根半島の 牛切層に対比される(鹿野ほか,1991a;鹿野,1991;高安ほか,1992).井上ほか(1981)は,本層上部 の礫岩砂岩(0c,0s)が下位の様々な岩相と構造的に不整合であると考え,これを布志名層の基底に置 いた.しかし,以下に述べるように,安山岩スコリア-軽石火山礫凝灰岩-凝灰岩(0p3)や安山岩軽石 火山礫凝灰岩-凝灰岩が礫岩砂岩(0p4)の間,あるいはその下位に分布することや,大田市五十猛 町大浦付近で安山岩スコリア - 軽石火山礫凝灰岩-凝灰岩(0p3)や砂岩礫岩(0c)の上にも安山岩-デイサイト溶岩(0a)が重なっていることなどから分かるように,それはみかけにすぎない(地質図参 照). **岩相** 本層は,デイサイト溶岩(0d),安山岩-デイサイト溶岩(0a),安山岩-デイサイト火山礫凝 灰岩-凝灰岩(0p1),安山岩石質火山礫凝灰岩-凝灰岩(0p2),安山岩スコリア-軽石火山礫凝灰岩-凝灰岩(0p3),安山岩軽石火山礫凝灰岩-凝灰岩(0p4),礫岩及び砂岩(0c),砂岩(0s)からなる.

デイサイト溶岩(0d)は、長径数mm以下の石英と斜長石斑晶の目立つ岩石である.斑晶は一般に破 片状で、斜長石、石英、磁鉄鉱のほか、普通輝石や斜方輝石、まれに角閃石が認められることがある. 石基は、ピロタキシチックないしガラス基流晶質組織を示し、斜長石、石英、磁鉄鉱、アパタイト、ジ ルコン、ガラス(脱ガラス化)のほか、普通輝石、角閃石?(仮像)、チタン鉄鉱などからなる(第8表: HKW-14、HKW-15).本層の最下部を占め、佐田町反辺から毛津にかけての地域や、出雲市乙立町神 戸川東側の地域、出雲市古志町、大田市街南側の地域にドーム状に分布する.溶岩の基底部が露出する 佐田町窪笛から毛津に至る林道では、ガラス質で、ジグソー割れ目が発達している.

安山岩 - デイサイト溶岩(0a)は、長径数mm以下の斜長石斑晶が目立つ、または、無斑晶質の安山 岩ないしデイサイトで、幾重にも累重していることが多い(第15回).本岩相のデイサイトは、デイサ イト溶岩(0d)に区分したデイサイトとは異なり、石英を含まない.しかも、安山岩と同様に苦鉄質鉱 物として普通輝石のほか、まれに紫蘇輝石または角閃石を含むので肉眼では安山岩と区別し難く、化学 組成上も連続するように見える.例えば、多伎町多伎下管沢の安山岩溶岩(第8表:0D7-7)は無斑晶質 填間状で、石基はガラスと斜長石、普通輝石、不透明鉱物からなる.また、佐田町呑水から朝原にかけ て分布するデイサイト溶岩(第8表:HKW-17)はガラス質で、斜長石、普通輝石、斜方輝石、磁鉄鉱な どの斑状結晶と、斜長石や微量の普通輝石、ピジョン輝石、磁鉄鉱、チタン鉄鉱、アパタイト、ジルコ ンなどの微結晶を含み、石基はガラス基流晶質組織を示す.こ立町立久恵峡のデイサイトもガラス質で、 斜長石や単斜輝石、斜方輝石、磁鉄鉱の斑状結晶と斜長石、単斜輝石、磁鉄鉱、アパタイトの微結晶を 含むもの(第8表:HKW-21)と、これらのほかに、黒雲母(仮像)の斑状結晶やオパサイトとジルコンの 微結晶を含むもの(第8表:0MR6-3)とが認められる.したがって、本報告では安山岩と石英を含まな いデイサイトとを安山岩 - デイサイト溶岩(0a)に一括した.

それぞれの安山岩 - デイサイト溶岩は、厚さが数m-数10mで、典型的な水底ブロック溶岩(Kano et al., 1991,1993)の様相を呈し、柱状節理と板状節理の発達した塊状部分の上下に同質の火山角礫岩 を伴う(第15図及び第16図).火山角礫岩に隣接する塊状部分では柱状節理に沿って幅数 cm-数10 cm にわたって脈状に角礫化し、脈をなす角礫岩と接する面には、それに直交するより細かな節理が生じて いる(第17図).この角礫岩脈は塊状部分に重なる火山角礫岩にまで延び(第17図),しかも、岩脈中で 角礫が回転している.このような角礫岩脈は、水が溶岩流の定置後に生じた柱状節理に沿って浸透し、 溶岩を急冷して破砕させるとともに、熱を奪って水蒸気となり、吹き上げてできたのであろう.溶岩の 末端部にも同様の角礫岩脈がみられる(第18図)が、これは柱状節理に沿ってではなく、溶岩の末端部 に向かって傾いており、柱状節理は脈に直交する方向にが生じている.このような角礫岩脈は、溶岩流 が前進を阻まれてランプ構造を形成するときのせん断面に沿って水が浸透して生じた可能性が高い、安 山岩 - デイサイト溶岩は、出雲市古志町からその西方の大田市朝山町に至る地域のほか、南方の乙立町、 佐田町反辺から原田、さらに南方の波多川沿いの尾根、そして大田市大浦から南西の海岸沿いにも分布 する.溶岩は再移動して級化成層した同質火山角礫岩とともに幾重にも重なり、高まりをなすとともに、

-42 -

第15図 大森層安山岩 - デイサイト溶岩及びこれと指交する火砕岩,砂岩礫岩の柱状図

第16図 大森層安山岩溶岩の産状 出雲市古志町新宮南方の採石場.溶岩は,柱状 節理の明瞭な塊状部(右の写真の下半分)と,これに重なる同質の角礫岩(右の写 真の上半分),そしてその下の同じく同質の角礫岩とからなる.溶岩と溶岩との 間に成層したあるいは異質の堆積物が挟まっている場合にはひとつひとつの溶 岩流が識別できる(左の写真). 露頭の前に立っているひとの身長は約1.7 m

第17図 大森層安山岩溶岩の柱状節理 出雲市古志町新宮南方の採石場、柱状節理の発達した塊状部の上面と 下面付近では、柱状節理に沿って角礫化している(上の写真)、脈状の角礫岩に接する面と直交する面に割 れ日ができている(下の写真)、柱状節理どうしの問隔は数10 cm 以下

第18図 大森層安山岩溶岩末端部の割れ目と柱状節理 湖陵町常葉寺東領の林道沿い。溶岩の末端部では流れの方向に傾斜した割れ目が発達し、下の写真に示されるように割れ目に沿って角礫化している。また、上の写真に示されるように割れ目に直交する方向に柱状節理が認められる。ハンマーの長さは約30 cm,スケールの刻みは1 cm または1 inch 単位

(側方に向かって薄化する.この典型的な例は多伎町小田や出雲市古志町周辺でみることができる(地質図参照).大田市静間町魚津静之 窟 西側の海岸では、安山岩スコリア - 軽石火山礫凝灰岩 - 凝灰岩 (0p3)を貫いて溶岩となって噴出しており、貫入部分では分岐し、水冷破砕を受けて角礫化している(第 19 図).その表面近くの火砕岩は、周囲より細粒になっている.これは、溶岩が冷えて表面の水蒸気の 膜が崩壊したとき、周囲の火砕岩から細粒の砕屑粒子が流動化して移動濃集した結果であろう.出雲市 古志町上新宮南方の採石場に至る道沿いの採石場跡の崖に露出する安山岩溶岩直上の凝灰質砂岩に貫入 する安山岩シルについても同様の現象が認められる(第20 図).

安山岩-デイサイト火山礫凝灰岩-凝灰岩(0p1)は、発泡の悪い軽石またはスコリアやガラス質安山 岩-デイサイトの角礫とそれらの細片からなり、基底付近に石質岩片が、最上部にそれらの細片が濃集 する傾向が認められる(第21図及び第22図).まれに含まれるガラス質安山岩-デイサイト岩塊には表 面からそれに直交する細かな節理が認められることがある(第22図).この種の堆積物は、ほとんど異 質物を含まず、構成粒子も円磨されていないので、高温で定置した証拠は見いだせないものの、直接噴 火に由来する重力流堆積物である可能性が高い.それぞれの堆積物の厚さは数m-10数mで、それら の間には、それらの、あるいは安山岩-デイサイト溶岩に付随する角礫岩の再堆積物と思われる、様々 な程度に円磨された安山岩-デイサイトの砕屑粒子を多量に含む砂岩礫岩が挟まれている(第23図). 砂岩礫岩の多くは厚さ数10cm-数mで、級化成層しており、安山岩-デイサイト火山礫凝灰岩-凝灰 岩と同様、重力流から堆積したと考えることができる.これらの安山岩-デイサイト火山礫凝灰岩-凝 灰岩と砂岩礫岩は、出雲市古志町から多伎町小田の間にあるいくつかの安山岩-デイサイト溶岩岩体の 間に挟まれて厚く分布している(第15図).

安山岩石質火山礫岩 - 凝灰岩(0p2)は、斑晶の少ない、あるいは無斑晶質の安山岩 - デイサイトの石 質岩片からなる岩石で、異質物をほとんど含まない.逆 - 正常級化した火山礫岩と火山礫岩凝灰岩との 数 cm-10 数 cm 単位の互層を主体とし、しばしば厚さ数 10 cm 以下の成層した同質凝灰岩を挟む(第 24 図). これらの分布は局所的で、多伎町小田と湖陵町畑村との間の安山岩 - デイサイト溶岩がなす山体 斜面上に10-50°の急傾斜で重なり、側方に向かって急激に薄化尖滅している. この形態と構成物の特 徴は、これらの岩石がマグマ水蒸気爆発によって生じ、火砕丘をなしていたことを示唆する. 構成砕屑 粒子の一部が様々な程度に円磨されていることがあるが、それは波浪によって洗われたためであろう.

安山岩スコリア-軽石火山礫凝灰岩-凝灰岩(0p3)は、主にスコリアないし軽石、石質岩片とそれらの細片などからなる火砕流堆積物または火砕サージ堆積物である(第25図).火砕サージ堆積物は、厚さ数 cm-数10 cm で逆-正常級化した粗粒火山礫凝灰岩と厚さ数10 cm で低角斜交層理が明瞭な細粒火山礫凝灰岩-凝灰岩とからなり、それらが重なり合って、より大型の平行-低角斜交層理を示す(第26図).火砕流堆積物は、厚さ数 m-10 数 m で淘汰不良の塊状火山礫凝灰岩-凝灰岩で、基底付近に安山岩角礫が濃集し、最上部に平行-波状層理が認められることが多い(第25図).主体をなす塊状部には幅数 cm-10 数 cm のガス抜けパイプが、また、石質火山礫の表面に平行な節理とこれに直交する節理が認められることがある(第27図).分布は局所的で大田市朝山町付近及び大田市五十盆町大浦と静間町魚津との間の地域に限られる.後者の地域では上位の火砕流堆積物に軽石岩塊が多数認められる.この軽石岩塊は径数 mm の斜長石、普通輝石及び紫蘇輝石をわずかに含むガラス質の岩石で、表面は不定

-47 -

第19図 大森層中の安山岩岩脈と母岩の流動化 大田市静間町魚津静之窟付近の海食崖。安山岩スコリア-軽石火山礫凝灰岩 中に貫入し、その場で割れて母岩と入り混じっている。接触部の火山礫凝灰岩中は周囲の火山礫凝灰岩中に比べて火山礫が 少なく、その中で火山礫が岩脈と半行な方向に並んでいる。ハンマーの長さは約30 em

第20図 「大森層中の波打つ安山岩シルの上面と母岩の変形 出雲市古志町上新宮南方の採石場に至る道沿いの採石場跡、安 山岩溶岩直上の凝灰質砂岩に滑らかな表面を保ちつつ変形しながら貫入し、砂岩に塑性変形を与えている。内部には、平 面あるいは曲面の様々な組み合わせからなる割れ目が顕著に認められる。レンズキャップの直径は約6 cm

様々な程度に発泡した安山岩の粗粒火山灰-火山礫からなる堆積物 (放射状節理の発達した同質のガラス質火山角礫を含む)

第21図 大森層安山岩 - デイサイト火山礫凝灰岩 - 凝灰岩の柱状図 出雲市田代から下原に至る道路沿い、様々な程度に発泡した安山岩 もしくはデイサイトの岩片を含む

形で滑らかであり、外形に調和的に変形した繊維状の泡が顕著に認められる(第28図).

安山岩軽石火山礫凝灰岩 - 凝灰岩(0p4)は、径30cm以下の、軽石火山礫とその細片、火山ガラス片、 多種多様な安山岩やデイサイト、デイサイト溶結凝灰岩の岩片からなる塊状淘汰不良の火砕流堆積物で ある.大田市久手町久手から柳瀬、さらに、その東側の大田市波根町から朝山町にかけて分布するほか、 多伎町小田や湖陵町畑村、畑村の南方で、礫岩砂岩(0c)、または、安山岩 - デイサイト火山礫凝灰岩 - 凝灰岩(0ap1)にレンズ状に挟まれてわずかながら分布している.

大田市波根町から朝山町にかけての地域では久利層の泥岩など下位の堆積物を覆い,礫岩に覆われて, 厚さ10-40mの火砕流堆積物が五つ認められる(第25図). そのうち,二つの火砕流堆積物で主部が溶 結している.これらは、いずれもガラス質で、径数mm以下の斜長石斑晶を若干含むものの、苦鉄質斑 晶や岩片は少ない.

大田市久手町久手と柳瀬との間では、中粒砂岩に挟在する二つの火砕流堆積物が認められる(第 25 図).火砕流堆積物を構成する軽石は、径数 mm の斜長石、普通輝石、紫蘇輝石をわずかに含みガラ ス質で繊維状に延びた気泡が明瞭である.下位の火砕流堆積物は、ところによって、より細粒な、ある いは粗粒な粒子が集まって幅数 cm-数10 cm の脈あるいはパイプをなしていることがある.また、長 径 10-20 m の安山岩溶結凝灰岩の巨大岩塊とそれらの細片を含む.安山岩溶結凝灰岩岩塊は黒色緻密 なガラス質の岩石で、長さ20-30 cm 以下の黒色ガラスレンズや類質のガラス質火山礫を含み、柱状節 理のほかにスパイラクルが認められる(第25 図).上位の火砕流堆積物は、基底に岩片が濃集し(第25 図及び第30 図)、下位の砂岩に変形を与えている.主部の構成物は下位のものとほぼ同じであるが、炭 化木(第29 図)や軽石火山礫凝灰岩の巨大な岩塊や、火山礫の大きさの岩片が濃集した脈またはパイプ(第

第22図 大森層安山岩 - デイサイト火山礫凝灰岩 - 凝灰岩の産状 出雲市田代から下原に至る道路沿い、堆積物は、様々 な程度に発泡した岩片からなり、表面に直交する割れ目(放射状割れ目)が明瞭なガラス質安山岩岩塊が点在していること がある(上の写真)、写真の中で色の薄い岩片ほど発泡している。それぞれの堆積物の基底には岩片が濃集し、最上部には 細粒でかすかに業理が認められる(下の写真)、硬貨の直径は約2.3 cm,スケールの刻みは 1 cm または 1 inch 単位

第23図 大森層安山岩溶岩直上の礫岩 湖陵町常楽寺東側の林道沿い,溶岩に由来する火山角礫岩の上に重なり, 巨大な岩塊も円磨されている,左上の巨大な岩塊の長径は約3m

30 図及び第31 図)が多数認められる. 岩片が濃集した脈またはパイプは,水に浸かった火砕流堆積物か ら発生した水蒸気が抜けてできるパイプ構造(Kano, 1990)によく似ている(第31 図)が,網状あるいは樹 枝状に分岐しており(第30 図),しかも幅が数10cmに達するものがある点では水に浸かった溶岩中に できるスパイラクル(谷口,1882,1996;伊藤・谷口,1996)に似ている.下位のユニット中の,より細 粒な,あるいは粗粒な粒子がなす脈あるいはパイプも同じ様に水または水蒸気が抜けて堆積物が流動化 してできた構造であろう.これらの火砕流堆積物を挟む中粒砂岩は,安山岩 - デイサイトに由来する砕 屑粒子からなり,平行 - 波状層理が明瞭で,薄い細礫岩や細粒砂岩,粗粒砂岩を層状あるいはレンズ状 に挟む.そこには多数の木片や生痕が認められる(第32 図).堆積構造と生痕化石は,大田市久手町久 手と柳瀬との間の火砕流堆積物がきわめて浅い沖合の環境に堆積したことを示唆する.

大田市久手町久手と柳瀬との間に分布する火砕流堆積物は非溶結で,異質礫が多い点で,大田市波根 町から朝山町に分布する火砕流堆積物とは少し異なる.しかし,大田市久手町久手と柳瀬との間の火砕 流堆積物に含まれている溶結凝灰岩の岩塊は,大田市波根町と朝山町との間の上位の溶結凝灰岩に似て おり,ほぼ同一の層準に堆積した可能性が高い.

いずれにしても、これらの火砕流堆積物は、側方へは続かない. 礫岩及び砂岩(0c)や砂岩(0s)の直下,あるいは間にあることから、浅い水域に堆積したことは確かで、連続しないのは、その谷筋に堆積したか、あるいは、削剥されたためであろう.

礫岩及び砂岩(0c)は大田市朝山町から鳥井町にかけて卓越し,礫岩とこれに挟在する砂岩とをあわ

第24図 大森層の安山岩石質火山礫凝灰岩 - 凝灰岩の産状 湖陵町畑村西方, 450円沿い、ほとんど発泡していない安山 岩火山礫 - 火山灰からなり、級化成層している、下の写真のように低角斜交層理が明瞭で、上方に向かって細粒化する傾 向が認められる。また、上の写真に示されるように、細粒火山礫岩(写真の上半分)に始まり、細粒凝灰岩(写真の中段)に 終わるような堆積輪廻が認められる、上の写真の縦の長さは約2m、スケールの刻みは1cm または1inch 単位

第25 図 大森層安山岩スコリア - 軽石火山礫凝灰岩 - 凝灰岩及び軽石火山礫凝灰岩 - 凝灰岩の柱状図

せた層厚は300mを越える.その上方と側方では次第に薄くなり、やがて、トラフ型や平板型の低角斜 交層理の発達した砂岩(第34図)が卓越する岩相(0s)へと移化する.

礫岩及び砂岩(0c)中の礫岩は円磨された細-中礫を主体とし、細粒物をほとんど含まない.また、斜 交層理の発達した細-粗粒砂岩を層状またはレンズ状に間に挟み、あるいはこれに移化する(第33図). これらの礫岩砂岩の構成粒子の多くは直下あるいは周辺から供給された安山岩-デイサイトである.し かし、0p3 や0p4 の火砕岩に近接した層準には、軽石などが洗い出されて再堆積した凝灰質砂岩や細礫 岩が認められることがある.また、局所的ではあるが、大田市朝山町の礫岩からオーソコーツァイトの 礫が井上(1982)によって報告されている.この礫岩の礫の大部分はチャートで、ほかに、珪長質火山岩 類、花崗岩類、片岩などが認められ、チャート礫からは三畳紀新世-ジュラ紀古世の放散虫が検出され ている(梅田ほか、1992).これらの礫は、類似の岩石が近くに露出していないので、この時期に陸地と

第26 図 大森層安山岩スコリア - 軽石火山礫凝灰岩 - 凝灰岩がなす平行層理 -低角斜交層理 大田市静間町魚津西南方,産業廃棄物最終処分場付近の海岸, 帽子の頭頂部の直径は約18 cm

なっていた遠くの後背地から河川によって運ばれてきたことが考えられる.

礫岩及び砂岩(0c)は、10-30km、あるいはそれ以上の広い範囲に広がっており、その岩相と広がり を考慮すると、火山体山麓の、波浪に洗われる海岸からその沖合にかけて広がる扇状地もしくは三角州 をなしていた可能性が高い.また、砂岩(0s)は礫岩及び砂岩(0c)と同様に安山岩 - デイサイトの砕屑 粒子からなり、かつ、これに指交しており、礫岩及び砂岩(0c)のなす火山体山麓の扇状地や三角州の周 辺もしくはその沖合いに堆積したと考えられる.大田市鳥井町迫の海岸で礫岩及び砂岩(0c)に挟まれ ている砂岩(0s)には、平行層理やハンモック斜交層理の発達したシルト岩や細-中粒砂岩の互層と、南 側と北側に傾斜する斜交層理が明瞭な中粒または粗粒の砂岩の厚い層とが認められる(第35 図).岩相 の組み合わせに基づけば、前者は海浜から沖合の堆積物、後者は湾頭砂州堆積物もしくは沖合の砂堆を なす堆積物と解釈することが可能である.先に述べたように、大田市久手町久手と柳瀬との間の火砕流

第27 図 大森層安山岩スコリア - 軽石火山礫凝灰岩中のガス抜けパイプと本質 岩塊 大田市静間町魚津西南方,産業廃棄物最終処分場付近の海岸,ガス抜けパ イプは、塊状で淘汰の悪いスコリア - 軽石火山礫凝灰岩中に火山礫が濃集してパイ ブ管状に並んでいる。断面では縦に並んだ二筋の火山礫濃集部が明瞭(左の写真). 本質岩塊の表面は滑らかに変形し,表面に直交する割れ目と平行な割れ目とが生じ ている(右の写真).レンズキャップの直径は約6 cm,硬貨の直径は約2.3 cm

第28図 大森層安山岩スコリア - 軽石火山礫凝灰岩 - 凝灰岩中の軽石岩塊 大田市静間町魚津西南方, 産業廃棄物最 終処分場付近の海岸, 表面と内部の繊維状構造とが調和的に滑らかに変形している. レンズキャップの直径は約6cm

堆積物に挟まれている砂岩(0s)も、浅い沖合の環境に堆積したと考えられる.

化石 多伎町小田の海岸に露出する砂岩から海生貝化石 Glycymeris cisshuensis, Laevicardium shiobarense, Phacosoma hataii が産出する(Takayasu, 1982, 1986;高安・中村, 1984). これらは水深50 mより浅い環境を示唆する(小笠原, 私信).大田市久手と柳瀬の間の安山岩軽石火山礫凝灰岩-凝灰岩(0p4)には珪化木と炭化木が含まれており,砂岩には生痕や木片が認められる.

放射年代本地域出雲市南西部とその周辺地域の安山岩ないしデイサイト試料について 13-15Ma の 全岩 K-Ar 年代値が得られている(第8表). 温泉津地域から松江地域にかけて広い範囲で得られた大森 層火山岩の全岩 K-Ar 年代値は 14-16Ma (鹿野・吉田, 1984; Uto, 1989; Morris et al., 1990; Otofuji et al., 1991)であり,これに矛盾しない. Otofuji et al. (1991)は,松江地域と本地域周辺で自ら集めた試 料 15 個の全岩 K-Ar 年代の平均値として, 14.2±0.6Ma の値を報告している.

(鹿野和彦)

地層名 Tomita and Sakai (1937) 命名. 通商産業省(1969) は, Tomita and Sakai (1937) の布志名統を 布志名層とした. その後,高安・中村(1984) は,これを来待層,布志名層,神西層(松江層相当層) に分 けた. 本報告では,高安・中村(1984)の定義に従い, Tomita and Sakai (1937)の下部布志名統を布志名

-56-

第29図 大森層安山岩軽石火山礫凝灰岩 - 凝灰岩中の炭化木 大田市久手町の海岸,炭化木は断面の径1m以上に達する もの(上の写真)があり、小さなものでは完全に炭化している(下の写真)が、炭化していない部分は珪化している.近くに ある「波根の珪化木」もそのひとつで天然記念物に指定されている.硬貨の直径は約2.3 cm

第30図 大森層安山岩軽石火山礫凝灰岩 - 凝灰岩中の脱ガス構造の縦断面 大田市久手町の海岸。脱ガス構造は厚さ 1-2mの火山礫濃集部の直上から上方や側方に延びている。写真の縦の長さは約5m

層として扱う.

模式地 玉湯町布志名.

分布及び層厚 出雲市知井宮町南方から多伎町小田にかけて分布する.最大層厚 260m. 下部の砂岩 を主体とする岩相(Fj)の最大層厚は 260m,上部のシルト岩及び泥岩(Fm)の最大層厚は 100m.

層序関係 大森層と整合.島根半島の古江層に対比される(多井,1955;野村,1984,1986b;野村・ 米谷,1984;鹿野・中野,1985b;鹿野,1991;鹿野ほか,1991a).

岩相 下部の砂岩を主体とする岩相(Fj)は、細-中礫岩をレンズ状に挟む細-粗粒砂岩で、ハンモックまたはリップル斜交層理を示すことが多い(第36図及び第37図).部分的に極細粒砂岩ないしシルト岩や塊状の砂岩または礫岩を挟む.ハンモック斜交層理からうかがえるように、これらの堆積物は、海岸から沖合いにかけて堆積したと考えることができる.上部のシルト岩及び泥岩(Fm)は塊状の、または平行層理の発達したシルト岩及び泥岩で、下部の砂岩卓越相との漸移部では極細粒砂岩とシルト岩とが互層する(第36図及び第38図).塊状の極細粒砂岩ないしシルト岩の直下にあるシルト岩が火炎状に下から上に向かって移動変形していることがある(第38図).この構造は、直上の層の急激な堆積に伴って間隙水が上昇し、上方に移動して生じたものであろう.上部の泥質堆積物はより沖合いの波浪限界より深いところに堆積したものと思われる.泥質堆積物が卓越する層準の直下にあって平板型の斜交層理が急傾斜をなして発達している中粒の砂岩(第36図)は沖合いの砂堆に相当する堆積物である可能性がある.

第31図 大森層安山岩軽石火山礫凝灰岩 - 凝灰岩中の脱ガス構造の横断面 大田市久手町の海岸、周囲より細粒の管状 の壁の内側に火山礫が濃集しており、この中で粒子の分別が行われたことを示している。レンズキャップの直径は約6 cm

第32図 大森層砂岩中の生痕化石 大田市久手町久手と柳瀬との間の海岸。層理面上からみた Ophiomorpha?(上の写真)とフナ クイムシに食われた木片?の化石(下の写真),硬貨の直径は約2.3 cm

第33 図 大森屠礫岩砂岩の産状 大田市鳥井町八幡の海岸、礫岩は円磨された安山岩の細-巨礫からなり,下位の砂岩を削って いる。下方と右側方にむかって細粒となり,右側方では含礫砂岩に移化する。また,砂岩中の礫岩は砂岩とともに斜交層理 をなしてレンズ状に分布する。写真の縦の長さは約4.5 m

第34回 大森層砂岩の産状 多伎町花蔵温泉付近の道路沿い、リップル型の斜交層理明瞭な中粒砂岩、低角斜交層理が明瞭な砂 岩薄層の上では左から右への流れが卓越し、下では右から左への流れが卓越している。中程に点々と並ぶ礫は、速い流れ で運ばれてきてここに置き去りにされたものかもしれない、ハンマーの長さは約30 cm

第35図 大森層礫岩卓越相の間に挟在する砂岩卓越相の柱状図 大田市鳥井町道の海岸

化石 下部の砂岩から Phacosoma hataii, Laevicardium? shiobarense などの,また,上部のシルト岩泥 岩からは Macoma optiva, Cultellus izumoensis, Cyclocardia fujinaensis, Clinocardium shinjiense などの海 生貝化石群集, すなわち, Dosinia-Cardium 群集及び Macoma-Cultellus 群集が産出する (Takayasu, 1982, 1986;高安・中村, 1984).前者の群集は上部浅海帯の,後者の群集は下部浅海帯の環境を示唆する (Takayasu, 1982, 1986;高安・中村, 1984).現世種との比較から,前者の群集は,水深 50m よりも浅 い環境に,後者の群集は水深 50-150m に生息していたと考えられる (小笠原憲四郎,私信).前者の群 集は,生痕化石 0phiomorpha と共存することが多い(高安・中村, 1984).貝化石群集は,本地域が次第 に深い海になっていったことを示している.

模式地の布志名層からは若干の浮遊性有孔虫化石が産出する.野村(1984)及び野村・米谷(1984)は、 これに基づいて本層をBlow(1969)の浮遊性有孔虫化石帯N.10-11に対比している.模式地付近では松 江層に覆われており、布志名層と松江層との境界の年代は、これらの化石帯の年代と松江層に挟在する アルカリ玄武岩の全岩 K-Ar 年代値から12Ma と推定される(鹿野・中野、1985a).布志名層は島根半 島に分布する古江層とほぼ同時期の堆積物で、古江層は東西に延びた上部大陸斜面程度の深さの凹地に、 布志名層はその凹地の南側の浅い陸棚に堆積した海成層である(多井、1955;野村、1986b).

第36図 布志名層の柱状図

第37図 布志名層砂岩のハンモック斜交層理 湖陵町姉谷南方の農道沿い、ハンモック斜交層理を示す砂岩の直下には細礫 岩がハンモック斜交層理に調和的な形態をなして挟在していることがある(土の写真)、また、細礫岩やトラフ型斜交層 理を示す砂岩を削っていることもまれではない(下の写真)、スケールの刻みは 1 cm または 1 inch 単位

第38図 布志名層種細粒砂岩を挟むシルト岩とそれに重なる極細粒砂岩 出雲市知井宮南方,週田付近の農道沿い,砂 岩の基底部にシルト岩が火炎状に貫入している,下の写真はその拡大図,ハンマーの長さは約30 cm

IV.6 神西層 (Js, Jb, Jbp)

(鹿野和彦)

地層名 高安・中村(1984)による.服部ほか(1957)は、本報告の布志名層と神西層とを合わせた地層 を布志名層、本層基底のアルカリ玄武岩火砕岩を神西層と名付け、両者が指交関係にあると報告してい る.高安・中村(1984)は、従来布志名層とされていた地層を二つに分ける際、その下部を布志名層とし、 上部を服部ほか(1957)の報告に気づかずに新たな地層名として神西層と名付けた.高安・中村(1984)の 神西層の提唱は結果的に服部ほか(1957)の神西層の再定義ということになる.

模式地 神西湖周辺

分布及び層厚 出雲市知井宮町から神西湖,多伎町小田にかけて分布する.層厚は330m以上.上限 は確認されていない. 基底のアルカリ玄武岩 - 玄武岩質安山岩火砕岩の層厚は最大で50m.

層序関係下位の布志名層と整合.本層基底のアルカリ玄武岩火砕岩が布志名層を削って堆積していることから,高安・中村(1984)は布志名層と部分的に不整合であるとしている,しかし,この不整合はアルカリ玄武岩の噴火によって削剥されて生じた構造であって,布志名層との間の大きな時間間隙や構造的不整合を示すものではない.

岩相 本層は、砂岩、シルト岩及び礫岩(Js)、アルカリ玄武岩シル(Jb)とアルカリ玄武岩火砕岩(Jbp) からなる.砂岩、シルト岩及び礫岩(Js)は、主に、厚さ数10cm-数mで塊状の細-中粒砂岩と平行葉 理ないしリップル斜交葉理の発達した極細粒砂岩ないしシルト岩、及び、それらの互層からなり(第39 図)、局所的に細-中礫岩を挟むことがある.砂岩は泥質で、砂管などの生痕が多く、ところによって 炭質物の破片が認められる.

神西湖の南岸の本層の基底には、アルカリ玄武岩(0-47, 第8表)の火山礫凝灰岩を主体とする岩体 (Jbp)が分布する(第40図).この岩体(神西玄武岩:鹿野ほか,1996)は、下位の布志名層のシルト岩と、 上位の本層砂岩シルト岩とに挟まれて、走向方向に2.5 kmにわたって分布する.厚さは最大50mで、 走向に沿って東側では漸次、西側では急激に薄くなる.上位の堆積物は最も厚いところに向かってオン ラップしている.また、岩体の基底部は最も厚いところに向かってゆるやかに傾斜している.岩体が厚 くなるところの南側では、同質火砕岩が直径400-500mの円をなし内側に急傾斜して分布する.アル カリ玄武岩のシル(Jb)はアルカリ玄武岩火砕岩(Jbp)基底部の直下にある布志名層上部のシルト岩及び 泥岩(fm)中に貫入している.その組成(0-49,第8表)はアルカリ玄武岩火砕岩(Jbp)中の岩塊(0-47, 第8表)に比べてやや苦鉄質である.

岩体の主体は、厚さ2-20cm、塊状ないし逆級化した細粒火山礫岩-火山礫凝灰岩と、これに重なる、 厚さ0.5-1cmで波状ないし平板状に成層した凝灰岩とからなる層が何枚も積層した岩相(岩相A)(第41 図)と、厚さ0.2-2mで、ほぼ塊状の細粒火山礫凝灰岩と厚さ0.1-1mの成層した凝灰岩とからなる岩 相(岩相B)の二つである。岩相Aは互層していることが多く、岩相Bを間に挟むことがある。構成物 は、様々な程度に発泡し滑らかな平曲面でかこまれたガラス質火山灰ないし火山礫が多く、塊状のスコ

-66 -

第39 図 神西層砂岩の堆積構造と生痕 出雲市西神西町西組.上の写真は塊状細粒砂岩から漸移する平行葉理の発達した細粒 砂岩.塊状細粒砂岩には貝殻の溶脱した跡が,平行葉理の発達した細粒砂岩には砂管点在する.下の写真は平行葉理ない しリップル業理の発達した細粒砂岩.その上部は生物擾乱を受けて葉理が見えない.レンズキャップの直径は約6 cm

第40図 出雲市西神西町付近の地質図及び地質断面図 貝化石群集の区分と分布はTakayasu (1982, 1986)と高安・中村 (1984) による

- 68 -

リア火山礫やまれに液滴または糸状のガラス質火山灰を伴う. 岩相Aでは,液滴または糸状のガラス 質火山灰が比較的多く,径数mmの火山豆石や,点在する火山岩塊の直下で層理面が下に撓むサグ構造 がみつかることもある.また,細粒火山灰からなる基質に気孔が生じていることもある.岩相AとB のこのような特徴は,Surtsey型の噴火によって生じたもの(Fisher and Schmincke, 1984; Cas and Wright, 1987)に似ており,岩相Aは,水と水蒸気とを多量に含む噴煙から砕屑物が降下し流下する過 程で堆積した.そして,これよりも厚く,淘汰の悪い岩相B は,岩相Aをもたらした噴煙よりも粒子 の多い,したがって,噴出量の大きい噴煙の崩壊によって生じた流れから堆積したと考えるのがもっと もらしい.

以上の点から、本岩体は、その西方延長部が失われてはいるが、浅海に形成された火砕丘であると判断できる。内部構造と地質断面から外形を推定すると、この火砕丘は、外縁の径が1,500 m、火口の径が400-500m、火口縁の高さが100mに達する大きなものであったことがうかがえる。さらに、この火口縁の高さと、岩体直下の布志名層シルト岩と直上の本層砂岩シルト岩に含まれている貝化石群集から推定される当時の水深からすれば、噴火は、100m前後の深さから始まり、噴火の最盛期には海面近くか海面上にまで火砕丘が成長したと考えられる。山体の西側は、その後、水蒸気爆発あるい斜面崩壊などによって失われ、山頂部も削剥された(鹿野ほか、1996).

化石 下部の砂岩から Phacosoma hataii, Laevicardium? shiobarense などの海生貝化石で特徴づけられる Dosinia-Cardium 群集が, また, 上部の砂岩からカキの化石 Crassostrea gigas で特徴づけられる

第41 図 神西玄武岩火山礫岩 - 凝灰岩互層 出雲市西神西町麓の道路沿い、中程の火山礫直下の層理が下にた わんでいる。その上面の層理面はたわんでいないことから、これは火山礫が落下して生じたと解釈できる。 スケールの刻みは 1 cm または 1 inch 単位

Ostrea 群集が産出する(Takayasu, 1982, 1986;高安・中村, 1984).前者の群集は上部浅海帯,後者の 群集は潮間帯に生息していたと考えられる(Takayasu, 1982, 1986;高安・中村, 1984).前者が生息して いた水深は 20-50m である(小笠原憲四郎, 私信).

放射年代 本層基底のアルカリ玄武岩は25km 東方の松江層中のアルカリ玄武岩ないし粗面安山岩 (松江玄武岩) に対比されていた(高安・中村, 1984). しかし, 宇都ほかの未公表資料によれば, この 岩体の火砕岩中の火山岩塊及び基底直下のシルの全岩 K-Ar 年代値は, それぞれ, 13.6±0.5Ma, 14.0 ±0.2Ma である(第8表:0-47, 0-49). また, 高安・沢田(1989)も同じシルについて13.2±0.3Maの 全岩 K-Ar 年代値を報告している. したがって, 本層は岩相層序の上では松江層に対比されるが, 松江 玄武岩の全岩 K-Ar 年代値11-12Ma(鹿野・中野, 1985a; Uto, 1989; Morris et al., 1990; Otofuji et al., 1991)よりも100-200万年古く, 下位の布志名層との境界は時間面に斜交することになる.

IV.7 貫入岩 (B, F)

(鹿野和彦・沢田順弘)

波多層,川合層,久利層及び大森層にドレライト,玄武岩,ひん岩,安山岩-デイサイト,石英斑岩, 流紋岩などが岩株,シルまたは岩脈として貫入している.地質図ではこれらを苦鉄質貫入岩(B)と珪長 質岩貫入岩(F)とに大別して示した.ただし,溶岩に連続するなど貫入時期が直接判断できるものにつ いては,それらが属する層の火山岩として示した.

これらのうち, 佐田町八幡の久利累層の泥岩中に貫入する玄武岩質安山岩(HKW-20, 第8表)は, 斜 長石やカンラン石, セクト構造を示す普通輝石の斑状結晶と, 斜長石や普通輝石, ピジョン輝石, 磁鉄 鉱などの微結晶, そしてガラス(仮像)からなり, 填間状組織を呈する.また, 佐田町反辺の安山岩シル (HKW-18, 第8表)は, 斜長石と石英の斑状結晶と, 斜長石や石英, 普通輝石, 黒雲母, 角閃石, 不透 明鉱物などの微結晶とガラス(仮像)からなり, 填間状組織を呈する. 全岩 K-Ar 年代値はそれぞれ 15.1 Ma, 14.0Ma と大森層の年代の範囲に入る(HKW-20, HKW-18, 第8表).

苦鉄質貫入岩(B)と珪長質貫入岩(F)のいずれも、大森層より上位の地層には貫入していないので、 その多くは大森層の時代あるいはそれ以前に貫入したと考えられる.苦鉄質岩脈には北北東-南南西を 向くものと東北東-西南西方向を向くものとがある.前者は大森層まで、後者は久利層までを貫いてお り、前者は大森層の、後者は川合層、久利層の時期に貫入した可能性が高い.一方、珪長質岩脈は、北 北東-南南西を向き、大森層までを貫いているものがほとんどである.東北東-西南西方向を向くもの は川合層、久利層の流紋岩に限られる.これら岩脈の方位は、最大主応力の方位を示しており、川合層 久利層の時期と大森層の時期に本地域が、それぞれ、北北西-南南東方向の展張応力場、北北東-南南 西方向の圧縮応力場にあったことを示唆する.

V. 第 四 系

(鹿野和彦)

本地域に分布する第四系は、都野津層群,中位 I 段丘堆積物,中位 I 段丘堆積物,古期扇状地堆積物,差為層, 三瓶火砕流堆積物,低位段丘堆積物,多根火砕流堆積物,竹海層,砂州及び海岸砂丘堆積物,差為層, 三瓶火砕流堆積物,低位段丘堆積物,多根火砕流堆積物,一部鮮新世にかかる堆積物であるが,本報告では構成が複雑になることを避けるため,便宜的に第四系の項の中で記述する.三瓶火砕流堆積物と多根火砕流堆積物は、いずれも三瓶山の火山噴出物である.差海層と中海層は主として内湾ないし湖の堆積物からなる.中位段丘堆積物は当時の海,湖または河川の堆積物,低位段丘堆積物は河川の堆積物を考えられる.古期扇状地堆積物は、中位段丘堆積物あるいはそれ以前に大森層や久利層の火山岩がなす高まりの周辺に堆積した岩屑堆積物である.差海層の最上部は宍道低地帯の延長上にある差海から多伎町小田にかけて古い砂丘をなし、あるいは現在の砂丘に覆われて分布しており、中位段丘堆積物や古期扇状地堆積物とは指交関係にある.また、中海層は、三角州、扇状地、河川及び氾濫原堆積物や砂州及び海岸砂丘堆積物と指交関係にある.

V.1 都野津層群 (Tsu)

地層名 山陰第四紀研究グループ(1969)による.

模式地 江津市都野津.

分布及び層厚 大田市波根町北側の標高 90-120m の地域と大田市静間町西側の標高 40-90m の地域 に分布する.

層序関係 大森層を不整合に覆う. ほかの第四紀堆積物との関係は直接観察できない. しかし, 差海 層や段丘堆積物のなす堆積面より高いところに分布し, 未固結で, 砂丘をなしていたと考えることがで きるので, 都野津層群の最上部, 室神山層(水野ほか, 1994)に対比しておく. 直下の星の島層と同様, その年代は確定しがたいが, 室神山層は, 大江高山火山噴出物に由来する砕屑物を挟まないので, 大江 高山火山の活動終了後, おそらく 1Ma 以降に堆積したと考えることができる(水野ほか, 1994).

岩相 淘汰の良い細粒石英砂からなる堆積物である. 露頭が少ないため,内部構造などの詳細は不明 だが,淘汰が良く,構成粒子がほとんど細粒の石英である点は温泉津地域の都野津層群中の珪砂(井上 ほか,1977)と良く似ており,その粒度特性はこれが砂丘または海浜の堆積物であることを示唆してい る.

-71 -

V.2 中位 I 段丘堆積物 (Tm1)

松江市乃木を模式地として命名された乃木層(冨田・酒井, 1937)の一部と玉湯町湯町を模式地として 命名された湯町層(大西, 1974)に相当する段丘堆積物である. 堆積面の比高は10-20mである. 本地 域では,神西湖の南側に面した湖陵町三部にのみ分布する. この湖陵町三部では,厚さ1m以上の細粒 砂層に厚さ2mの礫層が重なる. 砂礫層は粗粒砂の基質と,円磨された中-大礫とからなる. 上限は土 壌に覆われて見えない. これらの砂礫は赤味を帯びた褐色-黄褐色を呈する.

V.3 中位Ⅱ段丘堆積物 (Tm2)

大西(1979)により安束層(三位ほか,1969)とされた段丘堆積物に相当する.本地域では,神西湖の南 側に面した湖陵町三部で比高5-10m,神戸川沿いの佐田町窪田や出雲市乙立町で比高20-30mの堆積 面をなして分布している.

佐田町窪田では円磨された中-大礫からなる礫層が部分的に露出しているが、堆積物の詳細は不明. 出雲市乙立町田代では、久利層流紋岩の上に厚さ2mの粗粒砂と細礫とからなる砂礫層に厚さ30cmの 赤褐色土壌が重なり、これを黒色土壌が覆っている.出雲市乙立町向名では、厚さ2m以上の細礫層が あり、これを厚さ1mの赤褐色風化火山灰が覆っている.この火山灰は、苦鉄質鉱物として主に黒雲母 を含むので、三瓶木次軽石層(町田ほか、1985)または三瓶雲南軽石層(林・三浦、1986)に対応するもの であろう.

鹿野ほか(1991a)によれば、北東隣の今市地域では泥を主とし、下位に礫や砂を伴う.最上部約20-50cmの泥は土壌化し、褐色を呈する.厚さは5m以上で、三瓶木次軽石層に覆われる.

V.4 古期扇状地堆積物 (f)

古期扇状地堆積物は、中位段丘堆積物あるいはそれ以前に大森層や久利層の火山岩がなす高まりの周辺に堆積した岩屑堆積物である。多伎町小田のほか、大田市大田の三瓶川に面した北側山麓斜面にわずかながら分布する。多伎町小田では、安山岩の岩屑を混じえた黄褐色-赤褐色の泥からなる。この堆積物は、主として大森層安山岩の風化層または崩土を起源とする、いわゆる土石流堆積物で、開折された扇状地をなしている。北東隣の今市地域では大山松江軽石層及び三瓶木次軽石層との関係から、中位Ⅰ及びⅡ段丘堆積物に対比されている(鹿野ほか、1991a).

地層名 鹿野ほか(1989)の再定義による.三位(1966)の差海層と石谷砂層とを合わせた地層.差海層 は簸川郡湖陵町差海海岸にわずかながら露出する更新世堆積物で,層位及び岩相の上でこれに対比し

-72 -

得る堆積物が中海及び弓ヶ浜の地下にも広く分布することが知られている.

三位・藤井(1972)は、三位(1966)の差海層の最上部の砂礫層とその直下の泥炭、粘土、砂からなる堆 積層との間に浸食面を認め、それぞれを差海砂礫層、外園層とした.しかし、外園層は潟湖の堆積物で あり、下部が海浜砂礫、上部が風成砂からなる差海砂礫層は海浜-砂州堆積物と考えられるので、両者 の間に浸食面があったとしても著しい時間間隙を想定する必要はない.差海砂礫層の上部とその上位の 石谷砂層との関係については、両者が共に風成砂からなるので漸移関係にあると考えることができる. また、三位ほか(1969)は、中海及び弓ヶ浜のボーリングコア記載に基づいて、大社地域と同様にこの堆 積物中に不整合が存在すると考えてこれを二分し、下位からそれぞれ弓ヶ浜層、安来層と命名している が、中海の音波探査結果(三梨ほか、1986、1987)は、それぞれ弓ヶ浜層と安来層とに相当すると考えら れる音響層の間に顕著な構造的不整合は発見されていない. 宍道湖の音響探査結果 (三梨ほか、1988)で は、安来層、すなわち、ここでいう差海層の上部のみが分布しているとされている.このようなことか ら、本報告では弓ヶ浜層と安来層、差海層と石谷砂層との区別は行わず、また、地層はできる限り、地 表に模式があるほうが好ましいとの立場から、鹿野ほか(1989)にならい、これらをまとめて差海層と呼 ぶことにする.

模式地 簸川郡湖陵町差海海岸

分布及び層厚 宍道低地帯の延長上にある湖陵町差海から多伎町小田にかけてと、さらに西方の大田 市波根町, 久手町久手, 鳥井町鳥井から静間町にかけても分布する. 層厚は数m ないし10 数m.

層序関係新第三系を不整合に覆う.模式地では上部(石谷砂層)に大山松江軽石層と三瓶木次軽石層 を挟む.中海, 宍道湖湖底下では本層上部(安来層)の下部に大山松江軽石層を,上部に三瓶木次軽石層 を挟む(正岡, 1972).大西(1979)は,上部の火山灰層を三瓶木次軽石とは異なるとしているが,その重 鉱物組成(正岡, 1972)は林・三浦(1986)の示した三瓶木次軽石層の重鉱物組成に類似している.

岩相 表層で見る限り、ほとんどが中-細粒の砂からなり、現世の砂丘に覆われて砂丘を形成している.しかし、湖陵町川尻の神社付近では、本層の礫層と砂層が布志名層や神西層を不整合に覆っている(第42図).礫層は円磨された細-中礫からなり、平行ないし低角斜交層理の発達した砂層を挟む(第43図).海側に向かって礫層は厚さを減じ、礫層に挟まれる砂層は厚さが増す.また、これらから漸移する直上の砂層は、細粒で淘汰が良く、明瞭な平行ないし低角斜交層理を示しており、これらは海浜ないし沖合いの環境に堆積したことを示唆する.大田市久手町久手の海岸にもこれと同様の堆積物が分布している.一方、より内陸側の湖陵町蛇池付近の砂取り場や大田市波根町では、砂礫薄層や粘土-シルト層を挟む塊状の細粒砂を見ることができる(第42図).これらは、堆積構造から見て、潟湖に堆積した可能性が考えられる.湖陵町差海と神西湖周辺のボーリング資料(三浦・松井、1979;米子工業高等専門学校、1985)によれば、本層は腐植あるいは貝化石を含む泥質堆積物と考えることができる.これと指交する後者は、したがって、海と潟湖とを画する砂州と砂丘の堆積物と考えるのが合理的である.

第42図 差海層の柱状図

V.6 三瓶火砕流堆積物 (Sp)

三瓶火砕流堆積物(服部ほか,1983)は、小畑(1967b)の大田軽石流,鈴木ほか(1968)の三瓶軽石流堆 積物,田原ほか(1968)と松井・井上(1971)の大田軽石流堆積物に相当し、直下に三瓶ベースサージ堆積 物、直上に三瓶降下堆積物を伴う(服部ほか,1983).林・三浦(1986,1987)と三浦・林(1987)は、これ らを一連の噴火の産物と考え、三瓶大田軽石流と名付けて一括している。佐田町上橋波横見では、本堆 積物の直下に三瓶ベースサージ堆積物がある(服部ほか,1983).しかし、本地域内では、横見以外のと ころで三瓶ベースサージ堆積物の分布が確認されていないので、地質図には一括して表示している。そ の詳細については、服部ほか(1983)に詳しい.

三瓶川から大田市街を経て大田市久手町に至る地域に分布するほか,神戸川支流の伊佐川や本流沿いの横見に点在する(第44図).大田市川合町周辺では低位段丘よりも高い堆積面をなし,海岸に近い波 根湖湖底下では中海層に覆われている.

主に角閃石黒雲母流紋岩軽石と火山灰とからなり、三瓶ベースサージ堆積物に比べて淘汰は悪いが、 全体に細粒で(第45 図及び第46 図),よく粉砕されている.軽石は白色で、噴出源の三瓶山(三瓶山地

-74 -

第43 図 差海層基底付近の砂礫層 湖陵町川尻の神社付近. ハンマーの長さは約30 cm

域)の近傍では最大径が25cmに達するものがあるが、一般には数cm以下で、火山灰に比べて量は少ない.火山灰は、桃白色ガラス片のほか、斜長石、黒雲母や微量の角閃石を含む.噴出源近くでは最大径70cm以下の花崗岩、アプライト、花崗閃緑岩など三瓶火山の基盤をなす岩石の破片が堆積物の基底付近に濃集している(服部ほか、1983)が、下流に当たる本地域内では、最大径数cm以下と細粒で、量も少なく、堆積物の下部に点在しているにすぎない.

細粒で平行-波状葉理の発達した基底部(第47図)と軽石火山礫が少なく平行-波状葉理の発達した 厚さ数m-10mの最上部の凝灰岩(第49図)とで分けられるいくつかのフローユニットが認められる(第 48図).それぞれのフローユニットの主部をなす軽石火山礫凝灰岩ないし凝灰岩は一見塊状に見えるが, 軽石火山礫の濃集した部分と軽石火山礫に乏しい部分とが重なり合って不明瞭ながら成層していること が多い(第48図).また,しばしば炭化木が点在し,そこからガス抜けパイプが上方に延びていること がある(第47図).

大田市街から海岸にかけての地域では、基底部ないし主部に細粒火山灰に取り囲まれた類質火砕物の 岩塊(第50図)や泥岩岩片(第51図)が、また、成層している最上部に層状またはポケット状の軽石濃集 部(第52図)が認められる。類質火砕物の岩塊はそれを取り囲む細粒火山灰とともに塑性変形している。 泥岩岩片も両端がぼろ切れのようにちぎれてはいるが、内部の層理と外形とが調和的に塑性変形してい る.軽石濃集部では周囲の葉理が薄くなっており、圧密されたことがわかる。これらに見られる塑性変 形は、本堆積物をもたらした火砕流が谷筋に沿って流れる間に水を取り込み、濡れたことを示唆する。 岩塊の中には類質火砕物からなるものがあり、その一部に火山豆石が濃集した部分が認められることが

第46図 三瓶火砕流堆積物及び多根火砕流堆積物の平均粒径 M₄と幾何学的分散 σ₄との関係

第47図 三瓶火砕流堆積物中の炭化木とガス抜けパイプ 大田市川合町吉永神社 境内の康(三瓶山地域). 三瓶火砕流堆積物は、久利層の泥岩(写真の基底の明るい 色調の部分)を波状に削っている.その基底層(写真の下の左右に走る直線状の境 界より下の部分)は厚さ20-30cmで,細粒で平行葉理-低角斜交葉理が発達して いる.その上の塊状の部分に炭化木の断面(黒色の小さな楕円形の部分)が点在して おり、その周辺に、周囲よりも粗粒の粒子が濃集して上方に向かって先すほみのパ イプがいくつか認められる.

ある. 直下の三瓶ベースサージ堆積物の細粒部分にはしばしば火山豆石が多数含まれている(服部ほか, 1983)ので, そのような岩塊の起源は三瓶ベースサージ堆積物に求めることができよう.

服部ほか(1983)は、三瓶火砕サージ堆積物中の木片の¹⁴C年代として、1万9千年前ないし2万9千 年前の値を、また、鈴木ほか(1968)と服部ほか(1983)は、三瓶火砕流堆積物中の炭化木の¹⁴C年代とし て、2万2千年前ないし3万年前の値を報告している。中には3万3千年前あるいは3万8千年前より も古いとの測定結果もある(服部ほか、1983;林・三浦、1987)が、これは火砕流に取り込まれた外来の 炭化木について得られた年代値であろう。とすれば、三瓶火砕流堆積物の噴出年代は、2万2千年前な いし3万年前ということになる。三瓶火砕流堆積物は、三瓶池田降下軽石(松井・井上、1971)に覆われ、

第48図 三瓶火砕流堆積物主部の成層構造 大田市えびすの国道9号線沿い. レンズキャップの直径は約6 cm

三瓶池田降下軽石は始良 Tn 火山灰(2 万1千年前-2 万2千年前:町田・新井, 1992)に覆われている (林・三浦, 1986, 1987;三浦・林, 1987).¹⁴C 年代から推定される噴出年代は, この層序関係に矛 盾しない.

V.7 低位段丘堆積物(T1)

松江市奥谷を模式地として命名された奥谷層(大西, 1974)に相当する段丘堆積物である.本地域では, 神戸川沿いの佐田町窪田や出雲市乙立町に比高10-20mの,また,静間川沿いの大田市久利町に比高 10mの面をなして細-中礫を主体とする堆積物がわずかながら分布する.礫は新鮮で,近くの中位段 丘よりも低い面をなしているので,それよりも後に堆積したと考えることができる.

神戸川や静間川沿いには低位段丘よりも比高の低い平坦面が認められる. 三瓶山地域の5万分の1地

第49 図 三瓶火砕流堆積物最上部の級化成層構造 大田市えびすの国道9号線近く のゲートボール場、レンズキャップの直径は約6 cm

質図幅では、それらをも一括して下位段丘として扱っている(服部ほか、1983).しかし、この低い平坦 面は、洪水時に冠水する高さにあるので、低位段丘に含めない.

V.8 多根火砕流堆積物(Tp)

多根火砕流堆積物(鈴木ほか,1968)は、角閃石黒雲母デイサイト溶岩の岩片からなる石質火砕流 (Block and ash flow)堆積物で、三瓶山の北側の三瓶川上流と神戸川の支流である伊佐川の上流、山口 の谷筋にわずかながら分布する.松井・井上(1971)の長者原火砕流、林・三浦(1986,1987)と三浦・林 (1987)の三瓶多根火砕流に相当する.

堆積物は,一般に塊状で(第53図)淘汰が悪く,細粒火山灰に乏しい(第45図及び第46図).火山灰 と細粒火山礫とが平行ないし波状に成層した厚さ数10cmの比較的淘汰の良い層(第45図及び第46図)

第50 図 三瓶火砕流堆積物中の細粒火山灰に取り囲まれた類質岩塊 大田市運動公園. レンズキャップの直径は約6 cm

第51 図 三瓶火砕流堆積物中の泥岩岩片 大田市鳥井町新田.レンズキャップの直径は約6 cm

第 52 図 三瓶火砕流堆積物中上部の荷重による塑性変形 大田市久手町新田近くの道路沿い. ハンマーの長さは約 30 cm

によって、いくつかのフローユニットが識別できる(第53 図及び第54 図). 堆積物を構成する岩片は緻密で、破断面に囲まれた径数 10cm 以下の多面体をなす(第55 図). 岩塊にはジグソー割れ目が認められることが多い(第54 図及び第55 図). 新鮮な岩片は灰色ないし紫灰色を呈するが、それぞれのフローユニットの最上部では、細粒な岩片が赤褐色に変色している. これは高温時に空気に触れて酸化したことを示唆する.

多根火砕流堆積物とほかの三瓶火山噴出物との関係は不明である.しかし,本質岩片は,三瓶山円頂 丘溶岩や,多根火砕流堆積物と三瓶山円頂丘溶岩との間にある北の原溶岩のものに類似しており,これ ら溶岩の前後に噴出した可能性が考えられる.服部ほか(1983)は,河川によって下刻された本堆積物が 北の原溶岩末端部の急崖と接していることなどから,北の原溶岩よりも古いと考えた.三瓶山円頂丘溶 岩の中に開いた室ノ内火口から度々噴出した太平山火砕流堆積物及び太平山降下火砕堆積物(服部ほ か,1983)のうち,太平山火砕流堆積物中の炭化木についておよそ4千5百年前の,太平山降下火砕堆 積物の間に挟まれる土壌についておよそ4千9百年前と3千7百年前の14C年代値が得られている(松 井・井上,1970,1971).また,多根火砕流堆積物より古いとされ,三瓶降下軽石堆積物(服部ほか, 1983),あるいは浮布降下火山灰(松井・井上,1971),三瓶浮布降下軽石(林・三浦,1986,1987)と呼 ばれている降下堆積物は、アカホヤ火山灰(6千3百年前:町田・新井,1992)に覆われている(林・三 浦,1986,1987).林・三浦(1987)は、このようなことから、多根火砕流堆積物の年代を5-6千年前と 推定している.

最近,多根火砕流堆積物中の炭化木の14C年代として4,310±80y.B.P. (Gak16218)の値(松井,1994)

第53図 多根火砕流堆積物の柱状図

が、また、太平山火砕流堆積物もしくは太平山降下堆積物中の炭化木の¹⁴C年代として3,710±100y.B.P. (KEEA-115)、3,710±130y.B.P. (KEEA-113)、4,780±100y.B.P. (KEEA-112)の値(松井・福岡,1996 ; 松井,1997)が報告されている.これらの太平山火砕流堆積物中の炭化木の14C年代うち,4,780±100 y.B.P. (KEEA-112)の値は、松井・井上(1971)が、多根火砕流堆積物(彼らの長者原火砕流に対応)の直 下にあるとした角井降下火山灰層中の炭化木から得られたもので、確かに松井(1994)の報告した多根火 砕流堆積物の炭化木の¹⁴C年代との中で最も古い値の4,310±80y.B.P. よりも有意に古く、彼らの考えた層 序に矛盾しない.しかし、服部ほか(1983)は松井・井上(1971)の角井降下火山灰層を多根火砕流堆積物 の上位にある太平山降下堆積物に一括しており、このとおりであれば、古い方の値は火砕流に取り込ま れたあるいは降下火山灰に覆われた古い炭化木の年代を示している可能性も考えられる.

v.9 中海層 (n)

地層名 三位(1962)命名.三位(1966),三位ほか(1969)や水野ほか(1972)は、中海及び宍道湖において、現堆積面から下方に連続する汽水成-海成泥質堆積物を主体とする地層を中海層と呼び、砂州や沿岸の三角州、扇状地、沖積平野をなす堆積物についても特に区別することなく、これらを中海層に一括して扱っている.すなわち、三位(1966)や三位ほか(1969)、水野ほか(1972)に従うと、宍道低地帯の完新世堆積物、すなわち"沖積層"を一括して中海層と呼ぶことになる.しかし、現堆積面上ではそこにある堆積物と堆積環境との関係が分かるので、堆積物の性格を知って、その分布を地質図の上に表現す

-83 -

第54図 多根火砕流堆積物の産状 大田市三瓶町多根の道路沿い.上の写真のように、淘汰不良の火砕流堆積物(写真の上の部分)が火砕サージ堆積物(写真の中段を左右に波状に走る細粒の部分)を最上部とする下位の火砕流堆積物(写真の下の部分)を覆う.下の写真は火砕サージ堆積物とその直下にあるのはジグソー割れ目の発達したデイサイトの巨大岩塊のクローズアップ.ハンマーの長さは約30 cm

第55図 多根火砕流堆積物中のデイサイト岩塊とその基質 大田市三瓶町多根の道路沿い、基質も岩塊もほとんどデイサ イトの破片で、岩塊にはジグソー剤れ目が認められる。硬貨の直径は約2.4 cm

るほうが情報量が多く、地質図の利用価値を高めることになる.一方、水底や地下に埋積されている堆 積物については、堆積環境や堆積物の特徴を一つ一つ確かめることは極めて困難である.そこで、鹿野 ほか(1989,1991a,1994)は、便宜上、宍道低地帯の地下または水底にある"沖積層"を中海層として 扱い、現在地表上にある"沖積層"については、それぞれの堆積学的特徴に応じて区分し記載した.本 報告では、鹿野ほか(1989,1991a)の考え方を拡張し、宍道低地帯の西方延長上に分布する水底下の完 新世汽水成 - 海成堆積物及びこれと指交する地下の堆積物を一括して中海層とする.

模式地 中海湖底下.

分布及び層厚 中海層は地表には露出していないが、神西湖や波根湖などの海跡湖とそれらの周辺地 域に分布していることがボーリングで確認されている(第56回,第57回,第58回及び第59回). 三角 州,扇状地及び氾濫原堆積物や砂州及び海岸砂丘堆積物は中海層と指交関係にある. 層厚は、最大で 30m前後.

層序関係神西湖周辺で差海層(安来層及び弓ヶ浜層)を数-10数m削剥した地形面を埋積している.また,波根湖や大田市市街周辺の低地では削剥された三瓶火砕流堆積物を覆っている.古環境の変遷を研究するために行われた波根湖でのボーリング(第60図及び第61図)では,上から順に三枚のテフラ,すなわち,Hn火山灰層(松井,1997),鬼界アカホヤ火山灰層(K-Ah,6,300年前:町田・新井,1992),波根軽石層が発見されている(中村ほか,1997).Hn火山灰層は,その重鉱物組成と角閃石の化学組成が,松井・井上(1971)が太平山降下火山灰及び最新降下火山灰と呼び,服部ほか(1983)が太平山

第56 図 神西湖,多伎町及び周辺地域における第四紀層を貫くボーリングの位置と完新統基底等深線 ボーリングの位置を示す黒丸の添字は完新統までの深さ、主として米子工業高等専門学校(1985)及び三浦・松井(1979)のデータによる

第57図 神西湖,多伎町及び周辺地域のボーリング柱状図 ボーリング位置は第56図参照.主として米子工業高等専門学校(1985)及び三浦・松井(1979)のデータによる

第58 図 大田市久手町,大田市街及び周辺地域における第四紀層を貫くボーリングの位置と完新統基底等深線 ボーリングの位置を示す黒丸の添字は完新統までの深さ.主として米子工業高等専門学校(1985)及び三浦・松井(1979)のデータによる

第 59 図 大田市久手町,大田市街及び周辺地域のボーリング柱状図 ボーリング位置は第 58 図,凡例は第 57 図参照.主として米子工業高等専門学校(1985)及び三浦・松井(1979)のデータによる

- 89 -

降下火砕堆積物と呼んで一括した三瓶山由来の降下火砕堆積物のものと類似しており、そのうちのどれ かに対応する(中村ほか、1997;松井、1997).波根軽石層は、化学組成から韓国鬱陵島の火山に由来 するU4に対比でき(沢田ほか、1997)、その年代は同じ鬱陵島起源のU2の9千3百年前(町田・新井、 1992)よりも古く、完新統基底の直上にあることから、おそらく1万年前よりも新しい(中村ほか、 1997).

岩相 本地域内のボーリング資料(三浦・松井,1979;米子工業高等専門学校,1985;中村ほか,1997)によれば、下部と上部、そしてかつての湖の縁辺部で砂礫が卓越し、三角州、扇状地堆積物など 粗粒な"沖積堆積物"や砂州、砂丘堆積物と指交する.一方、中部、とくに、かつての湖の中心部では、 貝化石あるいは腐植を含む粘土、シルトが卓越する(第56回、第57回、第58回及び第59回).このような堆積物の分布は、中海や宍道湖の中海層(水野ほか、1972)と同様、一連の海進-海退を反映してい ると考えることができる.堆積相や花粉などに基づいて明らかにされた波根湖の古地理の変遷を第62 図に示す.

V.10 砂州及び海岸砂丘堆積物 (b, c)

北隣大社地域の大社町から本地域の多伎町小田にかけて砂浜が続き,その背後には砂丘が広がっている.また,大田市五十猛町大浦から波根町にかけて,小さな入り江が点在し,その奥に沖積低地へと続く幅の狭い砂浜が分布している.これらの砂浜は,縄文海進の時代に海水が流入する浅い水域だった低地に生じた砂州である.神西湖や蓮池,蛇池,波根湖などは,砂州の発達にともなって海から隔てられた海跡湖である.砂州が成長し始めたのはおそらく海退の始まる3,000年前で,大社町から多伎町小田にかけては,斐伊川が流入し大量の土砂が供給されたために砂丘が発達するようになった(鹿野ほか,1989).この砂丘堆積物は,淘汰の良い細粒砂(三位ほか,1969;三位・藤井,1972)で,差海層最上部の砂層がなす古砂丘の開析谷を埋積している.最大層厚は60m程度.湖陵町大池や石谷では直下に泥炭層があり,石谷の泥炭について7,840±130y.B.P.の¹⁴C年代が得られている(三位ほか,1969).

V.11 三角州, 扇状地及び河川堆積物 (v)

砂州堆積物及び砂丘堆積物の背後には、周辺の河川から供給された砕屑物が氾濫原、自然堤防,流路 をなして堆積している.また、河川の始まりとなる扇状地や、その出口となる河口の三角州には、河川 の流れだけでなく、湖や海の水流、土石流などの重力流などによって運ばれた砕屑物が堆積している. ボーリング資料(三浦・松井、1979;米子工業高等専門学校、1985)によれば、これらの三角州、扇状地 及び河川堆積物は、海浜、砂州、砂丘、潟湖やその後背湿地の堆積物と指交している(第56 図、第57 図,第58 図及び第59 図).

第60図 波根湖ボーリング位置図 (中村ほか, 1997)

VI. 埋 立 地 (r)

(鹿野和彦)

本地域に大規模な埋立地はない.大田市久手町と波根町との間の低地は,波根湖とよばれる海跡湖で あったが,1762年から1853年にかけて断続的におよそ42ヘクタールが干拓され,残った水域も第二次 世界大戦中の1943年から1950年にかけてすべて干拓された(煤田,1997).奈良時代に書かれた出雲風土 記によれば,神西湖とその周辺地域は,神門水海という汽水域で,そこには斐伊川や神門川(現在の神 戸川)が流れ込み,その西側で外海に通じていたという.この湖は,斐伊川や神戸川から流入する土砂 で埋め立てられ次第に小さくなり,1635年と1639年の大洪水で斐伊川は宍道湖に流れ込むようになっ たが,神戸川もこの水域から外れて直接日本海に流れ込むようになって,神門水海は孤立した.これが神 西湖の始まりである(徳岡ほか,1991;神西湖の自然編集委員会,1995).その沿岸は江戸時代以降の治

-91 -

第61図 波根湖ボーリング柱状図 (中村ほか, 1997)

水にともなって部分的に埋め立てられ、あるいは人工的に改変されているが、詳細は不明である.神西湖と 日本海とを繋ぐ差海川は1687年に人工的に開削された水路である(神西湖の自然編集委員会,1995).

Ⅶ. 地 質 構 造

(鹿野和彦)

本地域には、南隣の三瓶山地域から連なる後期白亜紀-古第三紀火成岩類をとりまいて新第三系が分

第62図 波根湖の古地理の変遷 (中村ほか, 1997)

布し,日本海に沿って第四系が分布する.後期白亜紀-古第三紀火成岩類は,中国山地の主体をなすも ので,大小様々な岩体が山地の延びの方向,すなわち東北東-西南西ないし北東-南西方向に連なって いる.佐津目火山岩類や八神火山岩類の走向もこれに調和的である.これらを貫く岩脈には,中国山地 の延びの方向を向くものと,これにほぼ直交するものとがあり,後期白亜紀-古第三紀に本地域が中国 山地の延びに直交する方向の展張または圧縮応力場にあったことを示唆する.

本地域の新第三系は、中国山地北縁から島根半島、そして日本海にかけて広がる新第三系の一部をな す.中国山地北縁では北側に単調に傾斜しているが、島根半島とその周辺地域で著しく変形して宍道褶 曲帯(Otuka, 1937a, b, 1939;多井, 1973a)と呼ばれる複背斜を形成している.この構造運動は、最大 水平圧縮応力軸が南北になるような応力場で(鹿野・吉田, 1985;野村, 1986a)、大森層が堆積する直 前に始まり、松江付近で和久羅山安山岩が噴出する前まで続いた(多井, 1973a;山内・吉谷, 1981;鹿 野・吉田, 1985;野村, 1986a)と考えられている.

日本海沿岸に沿って北側に単調に傾斜して分布する中国山地北縁の新第三系は,米子,松江,出雲, 大田の南方で,新第三系が基盤に対して大きく内陸部に湾入している(吉田,1953;三位・吉谷,1972 ;吉谷ほか,1976). これらの湾入部は,前期中新世に生じた陥没盆地(藤田,1972),あるいは,火成 活動を伴って陥没したコールドロンと考えられている(三位・吉谷,1972;山陰グリーン・タフ団体研 究グループ,1973,1979;吉谷ほか,1976;沢田,1978a;山内・吉谷,1981;鹿野ほか,1993).本地 域南東部は南隣の三瓶山地域から東隣の掛合地域にまたがる出雲湾入部の湾頭部に,また,西部は大田 湾入部の湾頭部にあたる(第3図).

本地域の新第三系は、大田市朝山町付近で海岸線に沿って長さ2kmにわたって一対の向斜と背斜を なしてはいるものの、ほかの中国山地北縁の地域と同様、その大部分は西南西-東北東方向の走行し北

-93 -

側に緩く傾斜しており,ほとんど変形していない(第3図).出雲湾入部の最奥部は掛合コールドロン(沢 田,1978a)をなす波多層の溶岩火砕岩で占められ,それらと後期白亜紀-古第三紀火成岩類との間には 両者を限る正断層が発達している(沢田,1978a)が,その北西隅にあたる本地域南東部では,波多層最 上部のデイサイト火砕岩に覆われて見えない.川合層及び久利層は内陸の後期白亜紀-古第三紀火成岩 類や波多層の間の凹地を埋積するとともに,海岸に沿って広がっている.両層の堆積盆地の形態は見え ないが,多井(1973a,b)は,両層の等層厚線が東北東-西南西方向に延びていることから,その方向に 沿った堆積盆地を想定している.一方,大森層は,沿岸から湾入部最奥部まで分布して直下の久利層ば かりでなく川合層や波多層をも不整合に覆っている.すでに述べたように,岩脈の方位は,川合層久利 層の時期と大森層の時期に本地域が,それぞれ,北北西-南南東方向の展張応力場,北北東-南南西方 向の圧縮応力場にあったことを示唆しており,大森層が堆積する直前に大きな応力場の転換とそれに伴 う構造運動がこのような大きな不整合をもたらしたと考えることができる(鹿野ほか,1991b).

₩. 活断層、リニアメント及び地震活動

(鹿野和彦)

本地域及び周辺地域地域で明確に活断層と認定し得るものは報告されていない.また,顕著なリニア メントも認められない(活断層研究会,1980,1991).しかし,本地域及び周辺地域は,明治以降緩慢に 隆起しており(国土地理院,1978),第63回に示すように,まれにマグニチュード5前後の地震が発生 している(加藤,1979;活断層研究会,1980,1991).そのうち,最も記憶に新しいのは,1978年6月4 日に三瓶山南東約9kmの頓原町南西端(北緯35度09分,東経132度42分,深さ0km)で発生したマグ ニチュード6.1の地震である(気象庁地震予知情報室,1979).この地震で,大田市三瓶町志学一帯で家 屋の一部損壊,道路の亀裂,陥没,小規模な崖崩れなどがあったが,被害は軽微で局地的であった(加 藤,1979).明治5年の浜田地震は,本地域から50km近く離れた浜田市の沖合いで発生したが,規模 がマグニチュード7.4と大きく,浜田付近の海岸が隆起するとともに(今村,1913),浜田から本地域周 辺に至る広い範囲で家屋の損壊などの被害があった(巨知部,1889a,b)

第63図 20万分の1「浜田」地域内の震源分布図(服部ほか, 1983)

IX. 応 用 地 質

(鹿野和彦)

IX.1 金属鉱床

永元鉱山 佐田町中佐津目,伊佐川東岸に位置する.石英粗面岩(熱変成を受けた白亜紀珪長質 火砕岩?)中に胚胎する熱水性鉱脈で,鉱石は黄銅鉱を主体とし,閃亜鉛鉱,方鉛鉱,黄鉄鉱などからなる(日本鉱業協会,1968).主たる鉱脈に小原谷本鏈と山ノ神本鏈とがある.鉱脈は,走向N30°E,傾斜60°
W,脈幅0.1-4.5m,延長数60-120m程度で,銅,鉛,亜鉛をそれぞれ5-25wt%,3-30wt%,2-20wt%,銀と金をそれぞれ数100g/t,数g/t含む(島根県経済部,1951;日本鉱業協会,1968;通商産業 省,1969).

採掘のため三味線坑,エルム坑,小原谷中段坑,小原谷大切坑,山ノ神坑が開かれている.三味線坑 は明治以前に開かれたものらしく,詳細は不明.エルム坑は,明治初年にドイツ人兄弟が開いたもので, 相当の出鉱があったらしい(日本鉱業協会,1968).小原谷中段坑は明治35年(1902年)に開坑され,10 数年間採掘された.山下吹きを行い月産3,000斤の粗銅を産出した(島根県経済部,1951).

山ノ神坑が開かれたのは、小原谷中段坑とほぼ同じ頃、明治37年(1904年)のことである(日本鉱業協 会、1968).山ノ神坑の生産量は小原谷中段坑とほぼ同じで、粗銅で月産3,000斤程度あったらしい.大 正10年(1921年)に休山した(島根県経済部、1951).

山ノ神坑とほかの坑の鉱業権者は異なっていたが、永輝鉱業(株)が全てを買い取り、昭和14年(1939年) に山ノ神坑で採掘を再開した.昭和18年には小原谷大切坑が掘削され、昭和20年(1945年)に小原谷本 鏈、山ノ神本鏈などの鉱脈に到達した(日本鉱業協会,1968).

昭和41年(1966年)休山.昭和24年から昭和41年までの粗鉱総産出量は、14,500tであった(日本鉱 業協会、1968).

乙立鉱山 出雲市乙立町殿川内近隣に位置する. 鉱床は,殿川内北方,神戸川対岸の唐淵谷のほか, 和久利南方の葦谷にも分布する(島根県経済部,1951;横山,1985). どちらの鉱床も現在は採掘されて いない.

唐淵谷付近の鉱床(唐淵坑)は、久利層流紋岩火砕岩中に発達する硫化鉱の網状鉱脈である(通商産業 省,1969).鉱脈の主方向はN70°E-N60°Wで、脈幅1-3cm、延長20m以下、銅の含有量はおよそ2 wt%.硫化鉄鉱の鉱塊(大きなもので150t位あったらしい)が点在しており、昭和の初めにこれを採掘 したことがある(島根県経済部,1951).

葦谷(和久利坑)の鉱床では、明治の初年頃に銅鉱石を採掘したことがあるといわれている(島根県経

-96 -

済部,1951). ここには8m×2m 位の硫化鉄鉱塊があって,昭和の一時期採掘した(島根県経済部, 1951). この鉱床の産状は不明であるが,母岩や鉱石の種類が同じことから,唐淵坑と類似しているものと思われる.

窪田鉱山 佐田町窪田の旭北方の沢に位置する.波多層安山岩とその直下の古第三紀石英斑岩中に, 走向N7°E, 傾斜60°SW 方向に幅0.1-5m, 延長50mの方鉛鉱, 閃亜鉛鉱などからなる鉱脈が認めら れる(通商産業省,1969)とされている.しかし, 鉱床付近に分布する岩石は大森層のデイサイト溶岩, 久利層の流紋岩火砕岩, 野城花崗岩であり, 鉱脈の母岩についてはあらためて確認する必要がある. 1937 年から1943 年まで稼鉱.月100tの粗鉱を産出したといわれている(島根県経済部,1951).

▲触山 多伎町塚尾谷及び中郷に位置する.久利層流紋岩火砕岩中に胚胎する浅熱水性鉱脈鉱床である.上部鉱床と下部鉱床とがある.上部鉱床では、鉱脈が走向NS-N20°WとN40-60°Eの二方向に認められる.いずれも幅2-30cm程度で、黄鉄鉱、黄銅鉱及び少量の白鉄鉱などからなる.銅の平均含有量は1-3wt%、高品位のところで7-10wt%である.下部鉱床の場合も類似した産状と思われるが、鉱況の記録がなく、詳細は不明.坑口付近に残されている鉱石には、黄銅鉱と黄鉄鉱を主とし、5-10wt%程度の銅を含むと推定されるものがある.

明治17年(1884年)頃発見稼鉱されたといわれているが,江戸時代と思われる坑道も残されている. 昭和11年(1936年)頃は下部鉱床の露頭付近で銅の含有量12-13wt%の鉱石が月40t程度採鉱されてお り,昭和14年から17年にかけては立坑を使って下部鉱から月10-15t程度採鉱された.昭和17-18年 頃になると、上部鉱床に赤焼坑,続いて中切、中郷第1号、中郷第2号の各坑が開坑され、昭和20年 1月までに200-300t出鉱した.その後も細々と採鉱が続けられたが、現在は閉山されている.

以上,主として山田(1960)による.山田(1960)は、本鉱床を黒鉱式鉱床と考え、深部にその本体があると予想したが、確かめられてはいない.

本田儀鉱山 多伎町中郷及び鍋谷に位置する. 北隣の田儀鉱山と同様, 久利層流紋岩火砕岩中に胚胎 する浅熱水性鉱脈鉱床である. 走向N40-60°E, 傾斜70°NW, 黄鉄鉱, 黄銅鉱を伴う幅数1cm-1.5m の石英脈数条のうち, 二条が稼鉱された(島根県経済部, 1951). 銅の含有量は1-10wt%. 昭和16年か ら昭和24年にかけての年間粗鉱生産量は50-400t であった(鳥屋尾, 1985b). 昭和24年休山, 昭和51 年鉱業権放棄.

苫永鉱山 大田市大田町吉永に位置する.川合層砂岩中に貫入する久利層の安山岩中の裂か鉱脈鉱床 である.上野・土井(1960)によれば,主たる鉱石鉱物は,黄銅鉱,白鉄鉱で斑銅鉱を伴う.NE-SWと NNW-SSE の二方向あるが,NNW-SSE 方向に鉱石が濃集しており,この方向の幅数10-15cmの脈が 稼鉱された.脈内の粗鉱の銅の含有量は4-6wt%であった.開山は古く,およそ300年前に稼鉱され ていたらしい.明治から大正にかけて断続的に,昭和10年頃から昭和20年までは連続して稼鉱された が(島根県経済部,1951),現在は閉山されている.

右見鉱山 大田市五十猛町に事業所を置き,地頭所の石見鉱床と,その南の大屋鉱床,大田市大屋町 鬼村の鬼村鉱床,大田市長久町延里の延里鉱床,大田市久利町の松代鉱床を採鉱した鉱山である.いず れの鉱床も,久利層の泥岩直下にある流紋岩火砕岩中に胚胎する黒鉱式鉱床である.黒鉱を本格的に採 掘したのは石見鉱床だけで,ほかの鉱床では泥岩直下の塊状石膏鉱体のみが採掘された.石見鉱床は,

-97 -

泥岩直下の層状黒鉱鉱体と,石膏鉱体を間に挟み,その下により広い範囲に広がる網状珪化鉱(黄鉱と 珪鉱の)鉱体とからなる(金属鉱物探鉱促進事業団,1970,1971).黒鉱は方鉛鉱,閃亜鉛鉱,黄銅鉱な どからなり,その粗鉱は,銅,鉛,亜鉛をそれぞれ0.8-0.9wt%, 1.0-1.2wt%, 6.8-7.5wt%含んでい た(池田,1985).,昭和50年には,採算がとれないために,ほかの鉱床とともに石膏の採掘も停止し, 昭和59年には黒鉱の採掘も停止している.石膏の操業を停止するまでの14年間,石見鉱山の主体をな す石見鉱床と延里鉱床からの石膏生産量は,年間2-6万tであった(池田,1985).松代鉱床と鬼村鉱 床からの石膏生産量は,昭和40年当時で,年間2万-2万4千tと7千t程度あった(東元,1965).

久村鉱山 服部ほか(1957)によると、本鉱山は、多伎町畑谷南方から華蔵温泉の間の大森層砂岩礫岩 中に挟まれている厚さ1-2mの砂鉄層三ないし四枚を対象に1943 年から1945 年にかけて稼鉱した. 鉄 を20wt%前後含む粗鉱を鉄の含有量が50wt% 程度になるまでに精選した精鉱を三年間に13,606t 産出 した.時を同じくして同層順の砂鉄層を稼鉱した鉱山がほかにもいくつか隣接していたが実態は不明で ある.

IX.2 非金属鉱床

正備陶石鉱床多伎町中郷東側の草井谷の東側斜面に位置する.流紋岩中に胚胎する陶石鉱床である. 酒井ほか(1983)によれば、鉱石はセリサイトと石英を主体とし、微量の長石を含む.パイロフィライト が認められることがある.耐火度はSK26前後、推定鉱量はおよそ68万tである.江戸時代の後期に多 伎町久村の久村焼及び東出雲町意東の意東焼に磁器原料として用いられたことがある(伊藤,1967).

長谷ベントナイト・石膏鉱床 大田市大田町長谷に位置する.原石はモンモリロナイト, α - クリス トバライト,石英及びモルデン沸石からなり,久利層流紋岩火砕岩中に胚胎する(岡本・桑島, 1964). 昭和30年から採掘が始まり,現在も続けられている.松井・三田村(1962)の調査報告によれば,調査 当時,三社が石膏を求めてこの鉱床付近を試錐し,厚さ20m前後の石膏鉱体にあたっている.しかし, これは採掘されていない.

長谷ゼオライト鉱床 長谷ベントナイト鉱床の西側に位置する. 原石は,モルデン沸石などからなり, 久利層流紋岩中に胚胎する. 石見鉱山のイワミライトとして採掘されている.

第44ペントナイト鉱床 大田市朝山町の国道9号線の南側に位置する.原石は、モンモリロナイト、 斜長石、モルデン沸石、斜プチロル沸石からなり、久利層流紋岩火砕岩中に胚胎する(酒井、1970;酒 井ほか、1980;井上ほか、1981).昭和41年から採掘が始まり、現在も続けられている.

石見ゼオライト鉱床 石見鉱山石見鉱床の母岩となっている久利層の流紋岩火砕岩を原岩とする鉱床 で、原石は斜プチロル沸石、モルデン沸石、モンモリロナイトなどからなる. 黒鉱鉱体に向かう斜坑を 使って坑内採掘し、イワミライトとして出荷している. 本地域から温泉津地域にかけては、続成変質と 局地的な熱水変質とが重なり合って広い範囲で久利層の流紋岩が変質し、斜プチロル沸石、モルデン沸 石などが生じており(歌田・湊, 1972)、南隣温泉津地域の仁摩町仁方と馬路との間にある天河内でも同 様の原石が採掘されている(飯塚・井上、1975:酒井ほか、1978).

ਯ?≉ 石見鉱山石膏鉱床 前項参照.

IX.3 石材及び骨材

出雲市古志町新宮南方,多伎町小田,多伎町口田儀,大田市朝山町仙山では大森層の安山岩,佐田町 八幡原では大森層のデイサイト溶岩,佐田町大田市富山町下才坂の西方と多伎町奥田儀下大須では久利 層安山岩が,それぞれ砕石として採掘されている.中でも出雲市古志町新宮南方での採掘は大規模で, 立久恵峡の北側の斜面を複数の場所で深さ数10mまで掘り下げながら切り崩している.多伎町口田儀 ではかつて墓石などの石材として採掘されていたが,現在は行われていない(鳥屋尾,1985a).このほ か,海岸砂丘を構成する淘汰のよい細粒砂が骨材として各地で採掘されている.

IX.4 地すべり及び山崩れ

大田市富山町一帯では久利層の泥岩や凝灰質岩が吸水,膨潤して地すべりが起こっている.また,佐 田町東村や反部のように大森層の火山岩と直下の波多層などの変質した火山岩や火砕岩との境界付近, あるいは大森層火山岩と久利層泥岩との境界付近で地すべりが発生する例も知られている.昭和39年 7月豪雨の際は,尾根をなす大森層の風化した火山角礫岩,火山礫凝灰岩や礫岩,丘陵をなす布志名層 や神西層の泥岩風化層が石見大田地域内の各地で山崩れを起こした(三浦・松井, 1979).

IX.5 温 泉

金原(1992)ほかの資料によれば、本地域内には、出雲平成、湖陵、立久恵、華蔵、多伎いちじく、小

温泉名	位置	温度(℃)	湧出量*(l/min)	泉質	рН
須佐	佐田町反部	17	50	Na · Ca-SO4 · Cl	75
次に立たす	出気ののの	22	150	4×10^{-1004} Ci	7.5
业 <u>八</u> 志 出雪亚武	出委市立八志峡 出委市普波町倶知石	57	550		7.4
山安千成 湖陵1县自	出来们产货引不知道	52	350	Na Ca Cl SO	77
御陵15水 湖焼5早自	御殿町二郎 湖魏町一女	53	127	Na · Ca Cl	7.5
· ៣ 攸 2 与 水 苯- 苹	何次可二印 女法町本書	32	127	Na Ca-Ci	1.5
華殿 冬体いナドノ	多仅可化成	24 56	90 250	-	80
多投いらし、	多化吗么们	30	350	Na $Ca - Cl + SO_4$	0.U 7.6
小田	多位则小田	24	260	Na · Ca-CI · SU4	7.0
朝山	大田市朝山町	-	1	Na-SO ₄ · Cl	
久手	大田市久手町	-	4	-	
城山	大田市城山	16	-	-	6.1
用田	大田市鳥井町鳥井南方	16	5	(Ca-HCO ₃ SO ₄)	7.2
金剛	大田市鳥井町鳥井西方	17	4	-	6.5
大田	大田市五十猛町大浦	20	110	Na-CIHCO3	6.0-6.7
鳴滝	大田市大田町末広	14	-	-	-

第9表 石見大田及び大浦地域の温泉一覧

* 自然湧出量と動力による汲み上げ量とが資料に記述されている場合は後者の量を湧出量とした.

主として金原(1992)から引用

田,朝山,久手,城山,用田,金剛,大田,鳴滝,川合,須佐の各温泉がある(第9表). これらのうち, 立久恵,華蔵,小田,朝山,久手,城山,用田,金剛,大田,鳴滝,川合,須佐の各温泉は,温度が25 ℃以下の鉱泉で,出雲平成,湖陵,多伎いちじくの各温泉は42℃以上の高温泉である. いずれもNa⁺, Ca²⁺, Cl⁻, S0⁻⁴, HC0²⁻ などを成分とする弱酸性ないし弱アルカリ泉である. これらの位置を本来の温泉 と温度が25℃以下の鉱泉とに分けて地質図に示す.

出雲平成温泉は平成5年にボーリングで地下1,200mの大森層安山岩から湧出した温泉で,スポーツ

注) 地層の対比は鹿野による、本図の岩相層序区分は、原記載が不十分なため、地表から推定され る岩相層序とは必ずしも一致しない.

第64 図 温泉ボーリング地質柱状図

施設などを併設して市民の健康増進に利用されている. 湖陵温泉の第1号泉は,昭和43年に広域調査構 造試錐43PAKS-2のボーリングで1,372m以深の大森層安山岩火砕岩から湧出したもので,その後平成 2年に国民宿舎「国引荘」近くにボーリングしてほぼ同じ深さの大森層安山岩から湧出する第2号泉を 掘り当て,現在は両者を併用している.立久恵温泉も,昭和44年に広域調査構造試錐44EAKS-1のボー リングで湧出した温泉である.帯湯層は不明.湧出当時の湯温は約35℃であったが,現在は温度が低 下している.多伎いちじく温泉は,平成4年にボーリングで掘り当てたNa・Ca⁻C1・S0⁴ 温泉で,地表 からおよそ1,000mあまりの深さにある久利層流紋岩凝灰岩から56℃の高温水が湧出している. 華蔵温 泉と小田温泉は古来湯治に利用されてきた.

文 献

Blow, W.H. (1969) Late Middle Eocene to Recent planktonic foraminiferal biostratigraphy. In: Bronnimann, P. and Renz, H.H. eds., Intern. Conf. Planktonic Microfossils, 1st, Geneva (1967), Proc. 1, p. 199-422.

Cas, R.A.F. And Wright, J.V. (1987) Volcanic Successions. Allen & Unwin, London, 528p.

- 調枝勝幸(1970) 石見地方の瓦粘土鉱床の研究,第1報,都野津粘土の産状と鉱物組成.島根県工業 試験場報告, no. 6, p. 50-59.
- 調枝勝幸(1971) 石見地方の瓦粘土鉱床の研究,第2報,都野津粘土の産状と鉱物組成.島根県工業 試験場報告,vol.8, p. 67-79.
- 中国四国農政局計画部(1976) 国営農地開発事業計画大邑地区地質調査書報告書, I表層地質編. 中国四国農政局, 71p.
- Danhara, T., Kasuya, M., Iwano, H. and Yamashita, T. (1991) Fission-track age calibration using internal and external surfaces of zircon. J. Geol. Soc. Japan, vol.97, p.977-985
- Fisher, R.V. and Schmincke, H.-U. (1984) Pyroclastic Rocks. Springer-Verlag, Berlin, Heiderberg, New York, Tokyo, 472p.
- 藤田至則(1972) グリーンタフ変動と地向斜の発生-発展期の法則. 星野通平・青木 斌編集,伊豆 半島,東海大学出版会, p. 13-34.
- 福間 進(1972) 大江火山地域の層状学的・古地磁気学的研究.地質雑, vol. 78, p. 381-391.
- 服部 仁・鹿野和彦・鈴木隆介・横山勝三・松浦浩久・佐藤博 之(1983) 三瓶山地域の地質.地域地 質研究報告(5万分の1地質図幅),地質調査所,168p.
- 服部富雄・時津孝人・西村嘉四郎(1957) 第2節 島根県,A 江南地区.通商産業省地下資源開発審議会鉱山部会編集,未利用鉄資源,第4輯,p.194-202.
- 林 正久・三浦 清(1986) 三瓶雲南軽石層の鉱物特性と分布の 広域性. 山陰地域研究(自然環境), no. 2, p. 17-26.
- 林 正久・三浦 清(1987) 三瓶火山のテフラの層序とその分布. 山陰地域研究(自然環境), no. 3, p. 43-66.

東元定雄(1965) 島根県大田市松代,延里,鬼村の石こう鉱床.中国地方工業用鉱物開発調査委員会 編集,中国地方の工業用鉱物資源,第3輯,p.110-117.

東元定雄(1975)中国山地中央部大朝地域の広島花崗岩と山陰花崗岩.地調月報,vol.26, p.513-518. 北条凱生(1964)島根県高窪亜炭田の地質.九州大学理学部研究報告(地質学),vol.4, p.189-200.

- 黄 敦友・岡本和夫(1979) 山陰川合累層および相当層の浮遊性有孔虫化石群集. 瑞浪化石博物館研 究報告, no. 6, p. 101-110.
- 飯泉 滋・沢田順弘(1980) 松江南方の白亜紀後期 新第三紀初期火成岩類. 日本地質学会第87年総会・年会見学旅行案内書,第5班,38p.
- 飯泉 滋・沢田順弘・先山 徹・今岡照喜(1985) 中国・四国地方の白亜紀-古第三紀火成活動-火 成岩類の対比を中心として-.地球科学, vol. 39, p. 372-384.
- 飯塚 赴・井上多津男(1975) 県内産ゼオライト・ベントナイト鉱床の調査研究(第2報). 島根県工 業試験場報告, no. 12, p. 89-103.
- 飯塚 赴・井上多津男・酒井禮男・永島晴夫(1974) 石見地方の瓦粘土鉱床の研究,第4報,温泉津 長畑及び松山地区の粘土と粘土鉱床について.島根県工業試験場報告,no.11,p.163-180. 池田秋津(1985) 石見鉱山.島根県地質図説明書編集委員会編集,島根県の地質,島根県,p.448-450.
- 今村明垣(1913) 明治五年ノ浜田地震,震災予防調査会報告, vol.77, p.43-77.
- 今村外治(1951) 山陰西部の地方の第三系(要旨). 地質雑, vol. 57, p. 307.
- 今村外治(1953)島根県中西部における第三系層序の概要.日本地質学会西日本支部報, no. 12, p. 6-8.
- Imamura, S. (1957) A new Miocene sassfras from Shimane Prefecture, Japan. J. Sci. Hiroshima Univ., ser.C, vol.2, p.53-61.
- 今村外治(1964) 島根県都野津累層に関する新事実について(要旨). 地質雑, vol. 70, p. 405-406.
- 今村外治・迎三千寿(1955) Green tuffの層序・火成活動及び鉱床生成の関連,山陰地方(要旨).地 質雑, vol.61, p.313.
- 今村外治・迎三千寿・多井義郎ほか(山陰研究グループ)(1958)山陰地区の中・上部新第三系について.日本地質学会昭和33年討論会資料-日本第三系シンポジウム-, p.40.
- 今村外治・迎三千寿・吉田博直・多井義郎・和田 健(1952) 中国地方における後期新生代の地殻運動と火成活動(要旨). 地質雑, vol. 58, p. 346-347.
- 今村外治・山陰第三系研究グループ(1954)山陰地方中・西部のグリーンタフ(要旨).地質雑, vol. 60, p. 288-289.
- 井上秀雄・植田芳郎・寺島 滋(1977) 島根県邇摩郡温泉津町三子山周辺の珪砂鉱床. 地調月報, vol. 28, p. 445-459.
- 井上多津男(1980) 島根県中部, 仁摩地域の下部中新統-とくに波多累層安山岩質火砕岩の噴出源に ついて-. 地質雑, vol. 86, p. 783-797.
- 井上多津男(1982) 島根県中部の中新統布志名層からオーソコーツァイト礫の産出.地球科学, vol. 36, p.47-50.
- 井上多津男・酒井禮男・飯塚信之(1981) 島根県大田市朝山町付近の中新統の層序と変質. 島根県立
工業技術センター研究報告, no. 18, p. 20-28.

- 井上多津男・高島 勲・酒井禮男・飯塚信之(1983) 大江高山火山群の溶岩類のフィッション・ト ラック年代. 地球科学, vol. 37, p. 275-278.
- International Subcommission on Stratigraphic Classification (1994) International Straigraphic Guide -A guide to stratigraphic classification, terminology and procedure, Second Edition (edited by Salvador, A). International Union of Geological Sciences and Geological Society of America, Boulder, Colorado, 214p.
- 井岡 昇・水野篤行・山崎俊嗣(1990) 山陰西部の鮮新・更新統都野津層:古地磁気層序と堆積年 代. 第四紀研究, vol. 29, p. 257-266.
- 伊藤順一・谷口宏充(1996) 式根島流紋岩質溶岩流にみられる二次火口と放出物.火山,vol.41, p. 171-179.
- 伊藤菊之輔(1967) 島根の陶窯. 立花書院, 139p.
- 岩内明子・長谷義隆・水野篤行(1993) 島根県都野津層(鮮新統〜更新統)の花粉分析.日本地質学会 第100年学術大会講演要旨, p. 284.
- 神西湖の自然編集委員会(1995)神西湖の自然-小さな汽水湖・大きな恵み-.たたら書房, 181p.
- Kano, K. (1990) An ash-flow tuff emplaced in shallow water, Early Miocene Koura Formation, southwest Japan. J. Volcanol. Geotherm. Res., vol. 40, p. 1-9.
- Kano, K. (1991) Miocene pillowed sills in the Shimane Peninsula, SW Japan. J. Volcanol. Geotherm. Res., vol. 48, p. 359-366.
- 鹿野和彦(1991) 年代層序に関する基礎資料,石見大田-宍道湖南岸.鹿野和彦・加藤碵一・柳沢幸 夫・吉田史郎編集,日本の新生界層序と地史,地質調査所報告,no.274, p.64-65.
- 鹿野和彦・加藤碵一・柳沢幸夫・吉田史郎編集(1991b) 日本の新生界層序と地史,地質調査所報告, no. 274, 114p.
- 鹿野和彦・松浦浩久・服部 仁・山田直利・東元定雄(1988) 20 万分の1 地質図幅「浜田」, 地質調 査所.
- 鹿野和彦・中野 俊(1985a) 山陰地方新第三系の放射年代と対比について. 地調月報, vol. 36, p. 427-438.
- 鹿野和彦・中野 俊(1985b) 美保関地域の地質.地域地質研究報告(5万分の1地質図幅),地質調査 所,28p.
- 鹿野和彦・中野 俊(1986) 恵曇地域の地質.地域地質研究報(5万分の1地質図幅),地質調査所, 30p.
- 鹿野和彦・野村律夫・山内靖喜(1993) 松江市南方の"波多層"の岩相と年代. 地調月報, vol. 44, p. 659-668.
- Kano, K and Takeuchi, K. (1989) Origin of mudstone clastsin turbidites of the Miocene Ushikiri Formation. Shimane Peninsula, Southwest Japan. Sediment. Geol., vol.62, p.79-87.
- Kano, K., Takeuchi, K., Yamamoto, T. and Hoshizumi, H. (1991) Subaqueous rhyolite lavas in the

Miocene Ushikiri Formation, ShimanePeninsula, SW Japan. J. Volcanol. Geotherm. Res., vol. 46, p.241-253.

- 鹿野和彦・竹内圭史・松浦浩久(1991a) 今市地域の地質.地域地質研究報告(5万分の1地質図幅), 地質調査所, 79p.
- 鹿野和彦・竹内圭史・大嶋和雄・豊 遙秋(1989) 大社地域の地質.地域地質研究報告(5万分の1地 質図幅),地質調査所,58p.
- 鹿野和彦・宇都浩三.内海 茂(1996) 西南日本,出雲,中期中新世神西層中の浅海成アルカリ玄武 岩火砕丘.日本火山学会1996年度秋季大会講演予稿集, p. 171.
- Kano, K., Yamamoto, T. and Takeuchi, K. (1993) A Miocene island-arc volcanic seamount: the Takashibiyama Formation, Shimane Peninsula, SW Japan. J. Volcanol. Geotherm. Res., vol. 59, p.101-119.
- 鹿野和彦・山内靖喜・高安克己・松浦浩久・豊 遙秋(1994) 松江地域の地質.地域地質研究報告(5 万分の1地質図幅),地質調査所,126p.
- 鹿野和彦・柳沢幸夫(1989) 阿仁合型植物群及び台島型植物群の年代.地調月報, vol. 40, p. 647-653.
- 鹿野和彦・吉田史郎(1984) 島根県中・東部新第三系の放射年代とその意義.地調月報, vol. 35, p. 159-170.
- 鹿野和彦・吉田史郎(1985) 境港地域の地質.地域地質研究報告(5万分の1地質図幅),地質調査所, 57p.
- 加藤碵一(1979) 1978年6月4日の島根県中部地震による墓石の被害について.地調月報, vol. 30, p. 421-431.
- 活断層研究会(1980)日本の活断層-分布図と資料.東京大学出版会,東京, 363p.
- 活断層研究会(1991)[新編]日本の活断層-分布図と資料.東京大学出版会,東京,437p.
- 甲藤次郎・中村 純(1952) 島根炭田の層位学的並びに花粉分析学的研究. 高知大学学術研究報告(1), no. 29, p. 1-19.
- 川井直人・広岡公夫(1966) 西南日本新生代火成岩類若干についての年代測定結果.地質学会等四学 会学術大会総合討論会資料「年代測定結果を中心としてみた日本の酸性岩類の形成期」, p. 5.

建設省計画局・鳥取県・島根県編(1967)都市地盤調査報告書, vol. 15, 142p.

金原啓司(1992)日本温泉・鉱泉分布図及び一覧.地質調査所, 394p.

金属鉱物探鉱促進事業団(1970)昭和43年度精密調査報告書「北島根地域」. 105p.

金属鉱物探鉱促進事業団(1971)昭和44年度精密調査報告書「北島根地域」.139p.

金属鉱物探鉱促進事業団(1972a)昭和45年度精密調査報告書「北島根地域」. 123p.

金属鉱物探鉱促進事業団(1972b) 昭和46年度精密調査報告書「北島根地域」. 93p.

金属鉱業事業団(1990) 平成元年度精密調查報告書「北島根地域」. 84p.

金属鉱業事業団(1991) 平成2年度精密調査報告書「北島根地域」. 67p.

金属鉱業事業団(1992) 平成3年度精密調査報告書「北島根地域」. 56p.

金属鉱業事業団(1993) 平成4年度精密調査報告書「北島根地域」. 55p.

-104 -

気象庁地震課地震予知情報室(1979) 1978 年 6 月 4 日の島根県中部の地震について. 地震予知連絡会 会報, vol. 21, p. 132-134.

巨智部忠承(1889a) 明五石見の震災. 地学雑, vol.1, p.85-89.

巨智部忠承(1889b) 明五石見の震災(第二回). 地学雑, vol.1, p.137-141.

国土地理院地殻調査部(1978)島根県東部の地震活動.地震予知連絡会会報, vol. 19, p. 138-141.

- Kozu, S. and Yoshiki, B. (1929) Thermo-optic studies of anomite-basaltic hornblende-quartz andesite in association with biotite-common hornblende-quartz andesite, which together from the Volcano Sambe in Japan. Sci. Rep. Tohoku Imp. Univ., ser.3, vol.3, p.177-193.
- Machida, H. (1975) Pleistocene level of South Kanto, Japan, analysed by tephrochronology. In: Suggate, R.P. and Cressdwell, M.M., eds. Quaternary Studies, the Royal Society of New Zealand, p. 215-222.
- 町田 洋・新井房夫(1979) 大山倉吉軽石層-分布の地域性と第四紀編年上の意義-. 地質雑, vol. 88, p. 313-330.
- 町田 洋・新井房夫(1992) 火山灰アトラス [日本列島とその周辺]. 東京大学出版会, 276p.
- 町田 洋・新井房夫・百瀬 貢(1985) 阿蘇4火山灰-分布の広域性と後期更新世示標層としての意 義一.火山,第2集,vol.30, p.49-70.
- 米谷盛壽郎・井上洋子(1981)新潟堆積盆地における中新統株の有孔虫化石群集と古地理の変遷.化
 石, no. 30, p. 73-78.

正岡栄治(1972) 重鉱物組成からみた中海・宍道湖底下の第四火山灰.第四紀研究, vol.11, p.61-69. 松田高明(1976) 山陰中央部・島根県川本町周辺の後期白亜紀-古第三紀火山岩類.日本地質学会第 83年学術大会講演旨集, p.235.

- 松田高明(1977) 島根県川内鍋状陥没地の層序と構造.日本地質学会第84年学術大会講演要旨集,p. 188.
- 松田高明(1979) 山陰中央部・第三紀中部のフィッション・トラック年代. 日本地質学会第86年学術 大会講演要旨集, p. 32.
- 松田高明(1980) 山陰中-西部の白亜紀-古第三紀火成岩類のフィッション・トラック年代.日本地 質学会第87年学術大会講演要旨集, p. 124.
- 松田高明(1981) フィッション・トラック年代からみたら古第三紀田万川帯.日本地質学会第88年学術 大会講演要旨集, p. 132.
- Matsuda, T. (1982) Fission-track geochronology of Late Cretaceous to Early Neogene igneous rocks in San'in belt, Southwest Japan. Absatracts for workshop on fission-track dating, June 30, 1982, Nikko, Japan, p. 34-41.
- 松田高明・小田基明(1982) 島根県本川町周辺の白亜紀-古第三紀火成岩類の地質.地質雑, vol. 88, p. 31-42.
- 松井正夫・三田村信雄(1962) 長谷石こう山調査報告.中国工業用鉱物開発調査委員会編集,中国地 方の工業用鉱物資源,第1輯, p. 184-188.

松井整司(1994) 三瓶多根火砕流の¹⁴C年代.島根県地学会誌, no. 9, p. 26.

- 松井整司(1997) 第3章三瓶火山のアカホヤ以降の噴出物と旧波根湖底の試錐から得られた火山灰-対比と年代の推定-. 徳岡隆夫編集, 波根湖の研究. 島根大学汽水域センター特別報告, no. 3, p. 25-30.
- 松井整司・福岡 孝(1996) 三瓶火山の浮布黒色土以降の火砕物の層序(その1)-当方に分布するものについて-. 島根県地学会誌, no.11, p.41-47.
- 松井整司・井上多津男(1970) 三瓶火山噴火出物の¹⁴C 年代 日本の第四紀層の¹⁴C 年代(56) . 地球 科学, vol. 24, p.112-114.
- 松井整司・井上多津男(1971) 三瓶山火山の噴出物と層序.地球科学, vol. 25, p. 147-163.
- 松井 健・加藤芳朗(1962) 日本の赤色土壌の生成期・環境に関する二,三の考察.第四紀研究,vol. 2, p. 161-179.
- 松浦浩久(1989) 山陰地方中部に分布する白亜紀後期-古第三紀火成岩類の区分と放射年代. 地調月 報, vol. 40, p. 479-495.
- 松浦浩久(1990)赤名地域の地質.地域地質研究報告(5万分の1地質図幅),地質調査所,73p.
- 三位秀夫(1962)山陰団研の概報. 第四紀, no. 3, p. 47-48.
- 三位秀夫(1966) 日本海沿岸における海岸砂丘の問題点.日本質学会総合討論会「日本海地域の地学的諸問題」資料, p. 151-158.
- 三位秀夫・藤井一泰(1972) 出雲砂丘地の第四系について.三位秀夫博士遺稿論文選集, p. 25-38.
- 三位秀夫・水野篤行・大嶋和雄(1969) 出雲海岸平野の問題点.日本地質学会第76年学術大会シンポ ジウム資料「海岸平野」, p. 167-171.
- 三位秀夫・吉谷昭彦(1972)島根県下のグリーンタフ盆地の構造.三位秀夫博士遺稿論文選集, p. 7-16.
- Miki, S. (1950) Taxodiaceae of Japan, with special reference to its remains. J. Inst. Polytechn., Osaka City Univ., ser. D, vol.1, p.63-77.
- Miki, S. (1952) Trapa of Japan, with special reference to its rmains. J. Inst. Polytechn., Osaka City Univ., ser. D, vol. 3, p. 1-30.
- Miki, S. (1956) Endocarp remains of Alangiaceae, Cornaceae and Nyssaceae in Japan. J. Inst. Polytechn., Osaka City Univ., ser. D, vol.8, p. 221-272.
- Miki, S. (1957) Pinaceae of Japan, with special reference to its remains. J. Inst. Polytechn., Osaka City Univ., ser. D, vol. 8, p. 221-272
- Miki, S. (1958) Gymnospermas in Japan, with special reference to its remains. J. Inst. Polytechn., Osaka City Univ., ser. D, vol. 9, p.125-152.
- 三梨 昂・後藤慎二・大西郁夫・瀬戸浩二・高安克巳・徳岡隆夫・安間 恵・松岡弘和・中原昌樹・井 内美郎(1987) 中海の地形と堆積層(続報).山陰地域研究(自然環境), no. 3, p. 167-174.
- 三梨 昂・後藤慎二・鈴木徳行・大西郁夫・高安克巳・武田伸二・徳岡孝夫・山内靖喜・安間 恵・浅 野 広・金井 豊・井内美郎・水野篤行(1986) 中海西南部の湖底地形と堆積層(概報).山 陰地域研究(自然環境), no. 2, p. 71-79.

- 三梨 昂・後藤慎二・大西郁夫・高安克巳・徳岡隆夫・渡辺正巳・安間 恵・松岡弘和・中原昌樹・水 野篤行・井内美郎(1988) 宍道湖の湖底地形と堆積層.山陰地域研究(自然環境), no. 4, p. 43-50.
- 三梨 昂・徳岡隆夫編集(1988) 中海・宍道湖-地形・底質・自然史アトラス. 島根大学山陰地域研 究総合センター, 115p.
- 三浦 清(1963) 山陰中部における後期白亜紀-古第三期の火成岩類に関する地質学的岩石学的研究(1),火成活動史. 岩鉱, vol. 50, p. 66-76.
- 三浦 清(1973) 島根県およびその周辺地域の新第三紀中性 塩基性貫入岩類にみられる岩石化学的 地域性について. 地質学論集, no. 9, p. 173-182.
- 三浦 清(1974) 山陰グリンタフ地域に見られる新第三紀火山岩の岩石化学的地域性. 島根大学教育 学部紀要, vol.8 (自然科学編), p. 51-58.
- 三浦 清・林 正久(1987)火山活動史からみた三瓶火山のテフラの鉱物特性.山陰地域研究(自然環 境編), no. 3, p. 67-94.
- 三浦 清・松井整司(1979) 5万分の1表層地質図「石見大田及び大浦」及び地質概説,表層地質図, 表層地質分類と開発及び保全との関係.土地分類基本調査「石見大田及び大浦」,島根県, p. 8 -9, p. 23-29, p. 30-34.
- Miyashiro, A. (1974) Volcanic rock series in island arcs and active continental margins. Am. J. Sci., vol. 274, p. 321-355.
- Miyashiro, A. (1978) Nature of alkalic volcanic rock series. Contrib. Mineral. Petrol., vol.66, p.91-104.
- 水野篤行(1996a) 島根県江津市都野津に分布する鮮新世〜更新世前期の都野津層.日本第四紀学会第 四紀露頭編集委員会編集,第四紀露頭集-日本のテフラ, p. 284-285.

水野篤行(1996b) 山陰地域の鮮新-更新統(都野津層群)について、シンポジウム「第四紀層序と古環 境」-大西郁夫氏追悼シンポジウム(1996年11月3日-11月4日)-記念講演要旨, p. 42-46. 水野篤行(1996c) 島根県江津市都野津層の露頭.島根大学地球資源環境学研究報告, no. 15, p. 75-78. 水野篤行・大嶋和雄・中尾征三・野口寧世・正岡栄治(1972) 中海・宍道湖の形成過程とその問題

点. 地質学論集, no.7, p.113-124.

- 水野篤行・武智賢樹(1993)山陰西部の都野津層群上部に見られる土石流堆積物とその意義.地質雑, Vol.99, p.403-406.
- 水野篤行・武智賢樹・北尾秀夫・温品 徹(1993) 山陰西部の都野津層群,とくに層序区分とその中 にみられる不整合について.日本地質学会第100年学術大会講演要旨, p. 337.
- 水野篤行・北尾秀夫. 杉浦敏彦・増田哲史(1994) 山陰西部の鮮新-更新世都野津層群:模式地周辺 における層位学的・堆積学的新知見と今後の課題. 山陰地域研究(自然環境), no. 10, p. 35-51.
- Morris, P.A., Itaya, T., Watanabe, T. and Yamauchi, S. (1990) Potassium/argon ages of Cenozoic igneous rocks from eastern Shimane Prefecture - Oki Dozen Island, southwest Japan and the Japan Sea opening. J. Southeast Asian Earth Sci., vol.4, p. 125-131.

- Mukae, M. (1954) The Miocene in the southern area of Izumo-city, Shimane Prefecture. Japan. J. Sci. Hiroshima Univ., ser.C, vol.1, p. 33-35
- Mukae, M. (1958) Volcanostratigraphical study on the Miocene volcanism in the Shimane Prefecture, Japan. J. Sci. Hiroshima Univ., ser.C, vol.2, p. 129-172.
- 村上 久・小室裕明(1993) 作木コールドロンー中国山地中央部の古第三紀火山性陥没構造-. 地質
 雑, vol. 99, p. 243-254.
- 村上允英(1974) 西南日本内帯における後期中生代-古第三紀酸性火成岩類の迸入と構造とその関係 -とくに西中国を例にして.地団研専報, no. 18, p. 9-31.
- 村上允英・長谷 晃(1967) 西南日本内帯における後期中生代火山岩層の層序と対比.地団研専報, no.13, p.1-24.
- 村上允英・西野英之(1967) 中国西部における後期中生代酸性岩類の火山層序学的研究(II),火山岩 類の噴出機構に関する2,3の考察.山口大学理科報告, vol.17, p.35-40.
- 中村栄三(1979) 島根県那賀郡旭町地域の古第三紀火山性陥没構造について.日本地質学会第86年学 術大会講演要旨, p. 275.
- 中村唯史・楳田禎久・張 発勝・廉 錘權(1997)第1章波根湖の堆積層と古環境. 徳岡隆夫編集, 波根湖の研究. 島根大学汽水域センター特別報告, no. 3, p. 31-50.

中海・宍道湖自然史研究会(1982) 中海・宍道湖の自然史研究. 島根大学地質研究報告, no. 1, p. 3-19. 日本鉱業協会(1968) 永輝鉱山. 日本の鉱床総覧, 下巻, 日本鉱業協会, p. 695-697.

- 西山省三・三浦 清(1963) 20万分の1島根県地質図説明書.島根県, 23p.
- 野村律夫(1984) 島根半島古江層の浮遊性有孔虫化石.地質雑, vol. 90, p. 755-758.
- 野村律夫(1986a)島根半島中央部中新統の地質-その1層序について-.地質雑, vol. 92, p. 405-420. 野村律夫(1986b)島根半島中央部中新統の地質-その2 底生有孔虫化石群集について-.地質雑,

vol.92, p.461-475.

野村律夫(1986c) 島根県大田市久利層の模式地における底生有孔虫化石. 的場保望・加藤道雄編集, 新生代底生有孔虫化石の研究,秋田大学鉱山学部, p.135-150.

野村律夫(1989) 備北層群中のForam. Sharp Line について. 山陰地域研究, no.5, p.35-44.

- 野村律夫(1992) 日本海の拡大期における備北層群の底生有孔虫化石群集. 地質学論集, No. 37, p. 139-148.
- 野村律夫・米谷盛寿郎(1984) 浮遊性有孔虫による島根県布志名層の地質時代.山陰文化研究紀要, vol.23, p.1-19.
- Nomura, R. (1992) Miocene benthic foraminifers at sites 794, 795, and 797 in the Sea of Japan with reference to the Foraminiferal Sharp Line in the Honshu arc. In: Pisciotto, K.A., Ingle, J.C., Jr., von Breymann, M.T., Barron J., et al., Proceedings of the Ocean Drilling Program, Scientific Research Results, vol.127/128, pt.1, p.493-541.
- 小畑 浩(1967a) 中海・宍道湖周辺の第四系と地形発達史. 第四紀研究, vol. 6, p. 68-78.
- 小畑 浩(1967b) 三瓶山の地形と火山灰編年について. 地理学評論, vol. 40, p. 553-563.

Ogasawara, K and Nomura, R. (1980) Molluscan fossils from the Fujina Formation, Shimane Prefec-

ture, San-in district, Japan. Professor Saburo Kanno Memorial Volume, p.79-98. 岡本和夫(1959) 島根県出雲市南東部の新第三系. 地質雑, vol.65, p.1-11.

- 岡本和夫・桑島純一(1964) 島根県大田市長谷のベントナイト鉱床.中国地方工業用鉱物開発調査委 員会編集,中国地方の工業用鉱物資源,第3輯, p. 125-128.
- 岡本和夫・多井義郎(1957) 島根県出雲市南部玉造層群の中新世小型有孔虫化石群.地質雑, vol. 63, p. 340-356.
- 岡本和夫・高橋由美子・寺内雅美(1971) 島根県仁摩中新世川合累層の貝化石群集. 松下久道教授記 念論文集, p. 179-185.
- 大村明雄・河合貞行・玉生志郎(1988) ²³⁰U⁻²³⁸Th 放射非平衡系による火山噴出物の年代測定.地調月 報, vol. 39, p. 559-572.
- Onishi, I. (1969) Pollen flora of the Tsunozu Group in Shimane Prefecture, Japan. Mem. Fac. Sci., Shimane Univ., Nat. Sci., vol.2, p.42-62.
- 大西郁夫(1974) 山陰地方の第四紀中・後期の植物化石. 島根大文理学部紀要, 理学科編, no.7, p. 101-115.
- 大西郁夫(1977) 出雲海岸平野第四紀堆積物の花粉分析.地質雑, vol.83, p.603-616.
- 大西郁夫(1979) 出雲海岸平野の第四系. 島根大理学部紀要, no, 13, p. 131-144.
- 大西郁夫(1985) 中・上部更新統および完新統. 島根県地質図編集委員会編集, 島根県の地質, 島根県, p. 126-140
- 大西郁夫(1986) 中海・宍道湖湖底表層コアの花粉分帯と環境変遷.山陰地域研究(自然環境), no.2, p. 81-89.
- 大西郁夫(1988) 中国地方の第四紀層.地質学論集, no. 300, p. 127-144.
- 大西郁夫・調枝勝幸(1970) 都野津層群-山陰地方の鮮新統・更新統-・第四紀研究, Vol.9, p.149 -152.
- 大西郁夫・松田志朗(1985) 出雲海岸平野下の第四紀堆積物.山陰地域研究(自然環境), no. 1, p. 51-60.
- 大西郁夫・千場英樹・中谷紀子(1990) 宍道湖湖底下完新統の花粉群. 島根大学地質研究報告, no.9, p.117-127.
- Otofuji, Y., Itaya, T. And Matsuda, T. (1991) Rapid roatation of southwest Japan-paleomagnetism and K-Ar ages of Miocene volcanic rocks of southwest Japan. Geophys. J. Int., vol. 105, p. 397-405.
- Otuka, Y. (1937a) Tertiary folding in Japan. Proc. Imp. Acad. Tokyo, vol.13, p.78-81.
- Otuka, Y. (1937b) Some geologic consideration of the folded Tertiary zones in Japan (advanced paper). Bull. Earthq. Res. Inst., vol.15, p. 1041-1046.
- Otuka, Y. (1939) Tertiary crustal deformations in Japan. Jubilee Pub. Commemor. Prof. Yabe's 60th Birthday, p. 481-519.
- 酒井禮男(1970) 島根県大田市朝倉ベントナイト.地学雑誌, Vol. 79, p. 49-54.

-109 -

- 酒井禮男・井上多津男・飯塚信之(1980) 島根県大田市北部の火砕岩の変質.島根県工業技術セン ター研究報告, no. 17, p. 52-61.
- 酒井禮男・井上多津男・飯塚信之(1983) 簸川郡多伎町田儀陶石鉱床について. 島根県工業技術セン ター研究報告, no. 20, p. 24-27.
- 酒井禮男・井上多津男・石飛 裕(1978) 県内産ゼオライト・ベントナイト資源の調査研究(第4
 報). 島根県工業技術センター研究報告, no. 16, p. 160-175.
- 坂本 亨・山田直利(1982) 20万分の1地質図幅「松江及び大社」.地質調査所.
- 山陰中生代未火成活動研究グループ(1979) 島根県中央部邑智町周辺の白亜紀-古第三紀火成岩類.

地質学論集, vol.17, p. 249-258.

- 山陰第四紀研究グループ(1969)山陰海岸地域の第四系.地団研専報, no. 15, p. 354-376.
- 山陰グリーン・タフ団体研究グループ(1973) グリーン・タフ成盆の発生期にまつわる二,三の問題 ー山陰・松江湾入部を一例としてー. 地質学論集, no. 9, p. 107-122.
- 山陰グリーン・タフ団体研究グループ(1979) 松江市南方の下部および中部中新統の陥没盆地. 地質 学論集, no. 16, p. 33-53.
- 沢田順弘(1978a) 島根県出雲市南方地域の地質.地質雑, vol. 84, p. 111-130.
- 沢田順弘(1978b) 島根県掛合陥没岩体に伴われる貫入複合岩体-非アルカリ岩のマグマ型と岩石系列 に関する2,3の問題-. 地質,vol.84, p.111-130.
- 沢田順弘・板谷徹丸(1987) 島根県東部における第三紀火山岩類のK-Ar 年代.日本地質学会第94年 学術大会講演要旨集, p. 417.
- 沢田順弘・中村唯史・楳田禎久・Sun Yoon・徳岡隆夫(1997)島根県大田市の掘削コアから発見された鬱陵島完新世初期火山活動由来の漂着軽石.第四紀研究, vol. 36, p. 1-16.
- 西南日本内帯後期中生代火成活動研究グループ(1967) 西南日本内帯における後期中生代の火成活動 と構造発達史. 地団研専報, vol. 13, p. 1-50.
- 柴田 賢・石原舜三(1974) 広島花崗岩中央部の黒雲母K-Ar 年代の南北変化. 地質雑, vol. 80, p. 431-433.
- 島根県地質図編集委員会(1982) 島根県地質図(20万分の1). 国土地図株式会社.
- 島根県地質図編集委員会(1997) 島根県地質図(20万分の1). 内外地図株式会社.
- 島根県地質図説明書編集委員会(1985)島根県の地質.島根県,646p.
- 島根県経済部(1951)島根県地下資源概査報告書, 122p.
- 島根県立工業技術センター資源科編集(1976) 石見地方粘土鉱床調査報告書. 第1報 益田地区. 島根 県立工業技術センター, 20p.
- 島根県立工業技術センター資源科編集(1977) 石見地方粘土鉱床調査報告書. 第2報 浜田-江津地区. 島根県立工業技術センター, 22p.
- 島根県立工業技術センター資源科編集(1978) 石見地方粘土鉱床調査報告書. 第3報 大田-邑智地区. 島根県立工業技術センター, 21p.
- 島根県立工業技術センター資源科編集(1979) 石見地方粘土鉱床調査報告書. 第4報 金城地区. 島根

-110 -

県立工業技術センター, 27p.

- 島根県立工業技術センター資源科編集(1982) 石見地方粘土鉱床調査報告書.第5報 江津地区.島根 県立工業技術センター, 27p.
- 島根県立工業技術センター資源科編集(1983) 石見地方粘土鉱床調査報告書. 第6報 温泉津・大田・ 川本地区. 島根県立工業技術センター, 31p.
- 鈴木 敏(1897) 20万分の1地質図幅「浜田」及び同説明書.地質調査所, 136p.
- 鈴木隆介・横山勝三・高橋健一(1968) 三瓶火山の活動史と地形(演旨). 地理学評論, vol. 41, p. 386 -387.
- 田原敬次・北原忠徳・松井整司(1968) 三瓶火山の噴火物と活動史. 島根県高等学校教育研究連合会研究紀要, no. 4, p. 79-86.
- 多井義郎(1955) 古江累層の微小古生物学的研究-島根半島第三系の地質学的研究(その3)-. 地質 雑, vol. 61, p. 407-420.
- 多井義郎(1963) 瀬戸内・山陰新第三紀有孔虫群の変遷とForam. Sharp Line. 化石, no. 5, p.1-7. 多井義郎(1973a) いわゆる宍道褶曲帯について. 地質学論集, no.9, p.137-146.
- 多井義郎(1973b) 山陰中新統久利累層の環境解析図.広島大学教養部紀要 III, vol.7, p.7-24.
- 多井義郎・加藤道雄(1979) 島根県石見大田地域.土 隆一編,日本の新第三系の生層序及び年代層 序に関する基本資料, p. 101-102.
- 高橋英太郎(1959) 西部本州における中生代以降の植物群の変遷.山口大学理科報告, vol. 10, p. 181 -238.
- 高橋英太郎(1961) 島根県中部の都野津層群について.山口大学理科報告, vol. 12, p. 61-62.
- Takayasu, K. (1982) On some molluscan fossils from the vicinity of Lake Jinzai, Izumo district. Molluscan fossils from various localities in Shimane Prefecture, Part 3. Mem. Fac. Sci., Shimane Univ., vol. 16, p. 91-107.
- Takayasu, K. (1986) Diversification in the molluscan fauna of the Miocene Izumo Group, San-in District, southwest Japan. Paleontol. Soc. Japan, S.P., no. 29, p. 173-186.
- 高安克己・中村武史(1984) 宍道湖南岸のデスモスチルス産出層と貝化石からみたその古環境,地団 研専報, no. 28, p. 91-99.
- 高安克己・沢田順弘(1989) 出雲層群のアルカリ玄武岩の活動時期についての新知見.小林巌雄・立 石雅昭編集,古日本海-日本海沿岸後期新生代層の層序と古環境の変遷-,新潟大学理学部地 質鉱物学教室, p. 78-79.
- 高安克己・山崎博史・上田哲郎・赤木三郎・松本俊雄・野村律 夫・岡田昭明・沢田順弘・山内靖喜・吉 谷昭彦(1992)山陰地方の中新統層序と古地理.地質学論集, no. 37, p. 97-116.
- 竹ノ内誠一・多井義郎・加藤道雄(1981) 島根県大田市中新統模式川合・久利両累層の再定義とVicarya の発見. 日本地質学会西日本支部報, no. 72, p. 3.
- 竹ノ内誠一・多井義郎・加藤道雄(1982) 島根県大田市中新統の微化石層位学的研究-特に模式川合・ 久利両累層について-. 広島大総合科学部紀要 IV, vol.7, p. 49-89.

田中 隆・小草欽治(1981) 山陰沖における中期中新世以降の構造運動. 地質雑, vol. 87, p. 725-736.

種子田定勝(1944) 三瓶火山の地質並び岩石に就いて(略報). 岩鉱, vol. 32, p. 82-203.

谷口宏充(1982) 神津島面房溶岩内のスパイラクルの形成過程.火山, vol. 27, p. 249-260.

- 谷口宏充(1996) 高温流紋岩質溶岩-水接触型マグマ水蒸気爆発の発生機構.地質学論集, no. 46, p. 149-162.
- 寺岡易司・松浦浩久・牧本 博・吉田史郎(1996) 20万分の1地質図幅「高粱」. 地質調査所.
- 徳岡隆夫・大西郁夫・高安克己・三梨 昂(1990) 中海・宍道湖の地史と環境変化. 地質学論集, no. 36, p. 15-34.
- 徳岡隆夫・大西郁夫・高安克己・米元正一・安間 恵・後藤慎二・園田 巌・鹿島 薫(1991) 中海 北西(本庄工区)の固定地形と堆積層.山陰地域研究(自然環境), no. 7, p. 23-38.
- 冨田 達・酒井栄吾(1937)島根県布志名及び来待地方の地質.地質雑, vol.44, p.482-483.
- Tomita, T. and Sakai, E. (1937) Cenozoic geology of the Huzina-Kimati district, Izumo Province, Japan - A contribution to the igneous geology of the East-Asiatic Province of Cenozoic Alkaline Rocks. J. Shanghai Sci. Inst., Sec. II, vol.2, p. 147-204.
- 鳥屋尾 暁(1985a)石材.島根県地質図説明書編集委員会編集,島根県の地質,島根県, p. 561-563.
- 鳥屋尾 暁(1985b)本田儀鉱山.島根県地質図説明書編集委員会編集,島根県の地質,島根県, p. 446.
- 津久井雅志・柵山雅則(1981) 大山山麓における三瓶山起源の降下軽石層の発見とその意義.地質雑, vol. 87, p. 559-562.
- 都野津団体研究グループ(1972) 島根県大田市大家付近の都野津層群.三位秀夫博士遺稿論文選集. p. 17-23.
- 都野津団体研究グループ(1983) 島根県中部の都野津層と大江高山火山群.地団研専報, no. 25, p. 151 -160.
- 通商産業省(1967) 昭和41年度広域調査報告書「北島根地域」. 26p.
- 通商産業省(1969) 昭和42年度広域調査報告書「北島根地域」. 23p.
- 通商産業省(1970a) 昭和 43 年度広域調査報告書「北島根地域」. 44p.
- 通商産業省(1970b) 昭和44年度広域調査報告書「北島根地域」. 26p.
- 通商産業省(1971) 昭和43年度広域調査報告書「北島根地域」.14p.
- 植村和彦(1989) 環日本海地域のグリンタフ下部層の比較層序.古植物と古地理学的意味.昭和63年 度科学研究費補助金(一般研究C)研究成果報告書,41p.
- 上野三義・土井啓司(1960) 島根県吉永鉱山の銅鉱床(概報). 地調月報, vol. 11, p. 189-190.
- 梅田真樹・釘宮康郎・石賀裕明(1992) 島根県大田市北部の中期中新世のチャート礫より産出したト リアス紀新世-ジュラ紀古世放散虫.島根大学地質学研究報告, no.11, p.71-76.
- 煤田禎久(1997) 第4章波根湖干拓史.徳岡隆夫編集,波根湖の研究.島根大学汽水域センター特別 報告, no. 3, p. 31-50.
- 宇野泰光(1978) 島根県江津-浜田地域の都野津層の層序と構造-都野津層群の研究(その1)-.地 質学雑誌, vol. 84, p. 571-582.

- 宇野泰光(1979) 島根県大田市祖式-大家地域の都野津層群,とくに大江高山火砕岩について-都野 津層群の研究(その2)-. 地質学雑誌, vol.85, p.239-257.
- 宇野泰光(1994) 島根県江津 温泉津地域の鮮新 更新世都野津層群の岩相層序と岩相分布. 地質学 雑, vol. 100, p. 815-827.
- 歌田 実・湊 秀雄(1972) 島根県西部(仁摩-温泉津地区)の新第三紀凝灰岩類にみられる沸石の累帯分布.地質雑, vol. 78, p. 329-340.
- Uto, K. (1989) Neogene volcanism of Southwest Japan: Its time and space based on K-Ar dating. Univ. Tokyo Ph.D. Thesis, 184p.
- 藪本美孝・山内靖喜(1996) 島根県の中新世川合 久利層産ギンハダカ属等魚類化石について.日本 古生物学会第145回例会予稿集, p. 53.
- 山田正春(1960) 島根県田儀鉱山地質鉱床(概報). 地調月報, vol. 11, p. 519-523.
- 山上万次郎(1897) 20万分の1地質図幅三瓶山並同説明書.140p.
- 山口鎌次(1955) 三瓶火山の地質(演旨). 地質雑, vol. 61, p. 340-341.
- 山口鎌次(1956) 三瓶火山の所謂赤色溶岩について(演旨). 地質雑, vol. 62, p. 373.
- 山口鎌次(1963) 三瓶火山の地質-特に頂上部の Tholoide の地質構造と形態について(演旨). 地質雑, vol. 69, p. 32.
- 山元孝広・星住英夫(1988) 丹後半島新第三系の層序と中期中新世の火成活動.地質雑, vol.94, p. 769-781.
- Yamanoi, T. (1992) Miocene pollen stratigraphy of leg 127 in the Japan Sea and comparison with the standard Neogene pollen floras of northeast Japan. In: Pisciotto, K.A., Ingle, J.C., Jr., von Breymann, M.T., Barron J., et al., Proceedings of the Ocean Drilling Program, Scientific Research Results, vol. 127/128, pt. 1, p. 471-491.
- 山内靖喜・吉谷昭彦(1981) グリーンタフ堆積盆地発展の構造運動-島根県東部を例にして-. 地質 雑, vol.87, p.711-724.
- 山内靖喜・吉谷昭彦(1992) 日本海南部およびその沿岸地域における中新世の構造運動. 地質学論集, no. 37, p. 311-326.
- 横山 鼎(1985) 乙立鉱山.島根県地質図説明書編集委員会編集,島根県の地質,島根県, p. 443.米子工業高等専門学校(1985) 島根県地盤図(解説・資料編). 441p.
- 吉田博直(1953) 島根県第三紀層に関する2,3の問題.広大地学研報, no.3, p.25-31.
- 吉田博直(1961) 中国地方中部の後期中生代の火成活動. 広大地学研報, no. 8, p. 1-39.
- 吉田博直(1966) 中国地方中部地域の後期中生代の火成活動について.西南日本内帯総研連絡紙, no. 5, p. 2-4.
- 吉田博直・今村外治・迎三千寿(1952) 島根県中部の火成活動について(要旨). 地質雑, vol. 58, p. 255. 吉谷昭彦・山内靖喜・小坂哲朗・大西郁夫(1976) 島根地域を中心とした新第三紀・第四紀火山活 動・地球科学. vol. 30, p. 95-101.

QUADRANGLE SERIES

SCALE 1:50,000

Okayama (12) No. 25 and No. 26

GEOLOGY

OF THE

IWAMI-ODA AND OURA DISTRICTS

By

Kazuhiko Kano, Hirohisa Matsuura, Yoshihiro Sawada and Keiji Takeuchi

(written in 1997)

(ABSUTRACT)

OUTLINE

The Iwami-Oda and Oura districts (quadrangles) are located in the San-in province, Japan Sea side of southwest Japan. Neogene and Quaternary sediments and volcanic rocks lie in an ENE-WSW direction along the Japan Sea coast, and Late Cretaceous and Paleogene igneous rocks spread in the hilly, northern marginal area of the Chūgoku Mountains. Sambe volcano is situated just outside of the southern central margin of the Iwami-Oda district, and two pyroclastic flow deposits erupted from this volcano are known to be distributed along the upper reaches of the Sambe and Kando Rivers.

	Veologic Age	Stratigraphy	Lithology	Igneous activity	Depositional environment	Crustal movement	Radiometric ages and fossils		
	locene	Delta, fan, fluvial, sand bar and coastal dune deposits, and Nakaumi Formation	Sand, gravel and mud with peat		Bay, lagoon and coastal plain		Brakish to marine fauna		
	Ч	Tane pyroclastic flow deposit	Hornblende-biotite dacite	Qua					
	sistocene	Lower terrace deposits	Sand, gravel and mud	e vok	Fluvial				
		Sambe pyroclasti flow deposit	Hornblende-biotite rhyolite	Sam					
Ouatemary		Middle II	Mud. sand	from					
	te Ple	ie of terrace si deposits to g	and gravel B	tions					
	Ľ	Middle I O P	Mud, sand	Egi			Brakish to marine fauna		
		deposits							
	istoc.								
	d. Ple								
	Pleistoc. Mi								
		Tsunozu Group	Fine-grained sand		Coast		l Ma (K-Ar)		
	Sarly I	(Murogamiyama Formation)							
	Ene En	ll	<u> </u>						
	Plioc								
	Late Miocene								
				asalt ism			1		
	F	Jinzai Formation (> 300 m)	Sandstone, siltstone, conglomerate, and alkali pyroclastic rocks and sill	kali b	Shallow marine	lting	14 Ma (K-Ar)		
cue	Middle Miocene	Fujina Formation (< 260 m)	Sandstone, siltstone and mudstone	ii Al		ing fo	N. 10-11*		
Neog		Omori Formation	Andesite to dacite lava and	alka	Coast	trend	a l		
		(< 900-1,200 m)	conglomerate	29 J	to shallow sea	BW	N. 9-10*		
		Kuri Formation	Mudstone, and andesite to rhyolite	hyolitic	Rapid : Bathyal	marine transgi	ession		
		(< 700 -800 m)	lava and pyroclastic rocks	f tho	<i>5</i> ,.	on	15-19 Ma (K-Ar)		
	ene	Kawai Formation	Sandstone and conglomerate, and andesite to rhyolite lave and	inly of lesite	Lagoon to	ormat	Daijima-type		
	Mioc	(400-500 m)	pyroclastic rocks	l i i i i i i i i i i i i i i i i i i i	shallow marine (Caldera)	ing ne	18-23 Ma (FT)		
	te Early	Hata Formation (< 1,500 m)	Dacite pyroclastic rocks and lava	Icanis	Inland	-trend			
┝				⊔≯		L M .			
	Paleocene Eocene Oligocer								
		Ijimi Granit	Fine-grained biotite granite and hornblende-biotite granodiorite, etc.				32 Ma (K-Ar) 36 Ma (FT)		
ogen									
Pale		Hakami Volcanic Rocks	Dacite to rhyolite pyroclastic rocks	natisn			45 Ma (FT)		
			Medium- to coarse-grained	magn					
		Nojiro Granite	muscovite-biotite granite, etc	³ elsic			50-05 Ma (K-Ar)		
Lat	te		Dacite to rhyolite pyroclastic rocks.						
ceous		Satsume Voicanic Rocks	etc.		Inland				

Table 1 Summary of the geology of the Iwami-Öda and Öura districts

N. *: Neogene planktonic foraminifera zone X of Blow (1969) K-Ar: K-Ar age FT: Fission track age

LATE CRETACEOUS AND PALEOGENE

The Late Cretaceous and Paleogene of the Iwami-Oda and Oura districts include the Satsume Volcanic Rocks, Nojiro Granite, Hakami Volcanic Rocks, Ijimi Granite, and dikes. The Satsume Volcanic Rocks are intruded by the Nojiiro and Ijimi Granites, and the Hakami Volcanic Rocks contains blocks of the Nojiiro Granite and are intruded by the Ijimi Granites. The age of the Satsume Volcanic Rocks are unknown, but perhaps to be a part of the Late Cretaceous felsic volcanic rocks that are widely distributed in the Chūgoku Mountains. One K-Ar date for muscovite of the Nojiro Granite is 56 Ma. Three K-Ar dates for biotite and muscovite of the Ijimi are 32 Ma. The Nojiro and Ijimi Granites are therefore interpreted to have been emplaced during the Paleocene and Oligocene ages, and the Hakami Volcanic Rocks are most likely to have erupted in the Eocene age.

The Satsume Volcanic Rocks comprise mainly dacite and rhyolite welded tuffs. Dacite welded tuff is intercalated with volcaniclastic or epiclastic gravelly to sandy rocks. Rhyolite welded tuff overlies the dacite welded tuff and associated rocks. They are thermally metamorphosed by intrusion of the Nojiro and Ijimi Granites. Similar volcanic rocks of the Late Cretaceous Ochi Group occur in the Sambesan district, to the south of the Iwami-Oda district.

The Nojiro Granite is a part of the Paleocene coarse- to medium-grained granite which is widely distributed in the northern Chugoku Mountains. The major rock commonly contains muscovite and is accompanied with porphyritic fine-grained granite and granophyre.

The Hakami Volcanic Rocks comprises lower andesite to dacite pyroclastic rocks and upper dacite to rhyolite pyroclastic rocks. The lower part is exposed in the Sambesan district on the south of the Iwami-Oda and Oura districts but not in the Iwami-Oda and Oura districts. The pyroclastic rocks of the upper part are mainly welded and commonly contain quartz phenocrysts at its lower levels. They are thermally metamorphosed in the proximity of the Ijimi Granite.

The Ijimi Granite contains two major rock types, fine grained biotite granite and hornblende-biotite granodiorite, associated with stocks and dikes of fine-grained quartz diorite and tonalite. The hornblende-biotite granodiorite is distributed mainly along the wall rocks and appears transitional to the inner fine-grained biotite granite.

NEOGENE

The Neogene of the Iwami-Oda and Oura district includes the Hata, Kawai, Kuri, \bar{O} mori, Fujina and Jinzai Formations. They unconformably overlie the Late Cretaceous to Paleogene igneous rocks described above, with ENE-WSW-trending strikes and gentle northward dips.

The Hata Formation comprises and esite to dacite lavas and pyroclastic rocks and fills the Early Miocene Kakeya cauldron formed in a wide area from the southeastern corner of the Iwami- \overline{O} da district to the Sambesan (Mt. Sambe or Sambe volcano) and Tonbara districts. Only the uppermost dacite pyroclastic rocks are distributed in this area. They are 18.4 Ma in fission-track age for zircon. The Nodayama Complex, which is composed mainly of quartz diorite and is 18 Ma in K-Ar whole rock and mineral ages, intrudes into this formation in the Sambesan district.

The Kawai Formation comprises non-marine? to shallow marine sandstone and conglomerate, and andesite to dacite lavas and volcaniclastic rocks. This formation unconformably overlies the Hata Formation and interfingers with the marine Kuri Formation composed of mudstone, and rhyolite and andesite lavas and volcaniclastic rocks. The radiometric ages for the Kawai and Kuri Formations ranges mainly from 15 to 18 Ma.

The Omori Formation comprises non-marine to shallow marine andesite and dacite lavas and volcaniclastic rocks, and sandstone and conglomerate of contemporary volcanic and volcaniclastic rocks. This formation forms composite volcanic edifices and volcaniclastic to epiclastic aprons overlying the Hata, Kawai and Kuri Formations. K-Ar dates for whole rocks of the andesite and dacite lavas of this formation ranges mainly from 13 to 15 Ma.

The Fujina Formation onlaps the Omori Formation. The lower part is dominated by intertidal to littoral sandstone with minor conglomerate. The upper part is dominated by littoral siltstone and mudstone, and grades upward into the Jinzai Formation composed mainly of intertidal to littoral sandstone and siltstone. Alkali basalt lapillistone to lapilli tuff and tuff locally occupy the basal part of the Jinzai Formation. They are interpreted to be a dissected shallow marine pyroclastic cone. The planktonic foraminiferal assemblages from the Fujina Formation are correlative to Blow(1969)'s N.10-11 zone. K-Ar dates for whole rocks of the Jinzai alkali basalt are 14 Ma.

The Kawai and Kuri Formations represent an Early to early Middle Miocene marine transgression that occurred along the Japan Sea coast by rifting accompanied with the Japan Sea spreading. Coincident with the cessation of the Japan Sea spreading, southwest Japan was uplifted by colliding with Pacific plate or Philippine Sea plate. The unconformity between the \bar{O} mori and the underlying formations represents this event. Sea level probably rose while increasingly accelerated uplifting, resulting in a marine transgression-regression cycle from the \bar{O} mori Formation to the Jinzai Formation through the Fujina Formation. Rhyolite dikes and domes, and some mafic dikes in the Kawai and Kuri Formatios have an ENE-WSW trend, but many other mafic and felsic dikes intrude into the \bar{O} mori Formation with a NNE-SSW trend. This implies that the stress field changed when a regional unconformity between the \bar{O} mori and underlying formations was produced.

QUATERNARY

The Quaternary of the Iwami-Oda and Oura districts includes the Tsunozu Group, Middle I and II terrace deposits, Older fan deposits, Sashimi Formation, Sambe pyroclastic flow deposit, Lower terrace deposits, Tane pyroclastic flow deposit, Nakaumi Formation, coastal sand dune deposits, sand bar deposits, and delta, fan and fluvial deposits. The Tsunozu Group comprises Pliocene to Early Pleistocene nonmarine to shallow marine deposits and is exposed extensively along the coast to the south of this district. Only the uppermost part composed of coastal sand is exposed in an small area of the districts.

The Sashimi Formation is Late Pleistocene non-marine to marine shallow-water deposits. Its upper part comprises old coastal sand dune deposits distributed along the present Japan Sea coast. Middle I and II terrace deposits are the remnant part of the transgressive deposits of the Sashimi Formation, and the Older fan deposits represent alluvial deposits of that age. Lower terrace deposits are fluvial gravels and sands distributed along the Kando River and other minor rivers.

Sambe pyroclastic flow deposit comprises dacite pumice and ash, and Tane pyroclastic flow deposit is an block and ash flow deposit composed of dacite blocks and their comminuted clasts. These pyroclastic flow deposits were derived, 22-30 Ka and 5-6 Ka respectively, from Sambe volcano immediately south of the Iwami-Ōda district.

The Nakaumi Formation is lithologically similar to the Sashimi Formation but is Holocene in age. This formation grades upwards and laterally into coastal sand dune deposits, sand bar deposits, and delta, fan, fluvial deposits, spreading along the Japan Sea coast.

ACTIVE FAULTS AND LINEAMENTS, AND EARTHQUAKES

Few lineaments are recognized and no active faults are ascertained in the Iwami-Oda and Oura districts. There is no historical record of large earthquakes that occurred in this district. Minor earthquakes of M5-6, however, occasionally occurred in the surrounding area of Sambe volcano. The Hamada earthquake of M7.6 occurred in 1989 off Hamada city about 60 km west of the Iwami-Oda and Oura districts. This earthquake destroyed houses and other architectures even in these distant districts.

ECONOMIC GEOLOGY

There are many closed metal mines of small scale in the Iwami-Oda and Oura districts. Iwami, Oya, Nobusato, Onimura and Matsushiro mines worked Kuroko-type deposits in the rhyolitic rocks of the Kuri Formation. Major products of these mines were, however, gypsum. Ottachi, Tagi and Okutagi mines worked ENE-WSW- or NE-SW-trending veins of copper sulfides also in the rhyolitic rocks of the Kuri Formation. Yoshinaga mine worked NE-SW- and NNW-SSE-trending veins of copper sulfides in the andesite lava of the Kuri Formation. Eiki and Kubota mines worked NNE-SSW-trending veins of copper, lead and zinc sulfides in Late Cretaceous volcanic rocks. Iron sand was mined during the Second World War from the Omori Formation.

Bentonite is worked from rhyolite pyroclastic rocks of the Kuri Formation at Asayama and Nagatani. Zeolite is worked from rhyolite pyroclastic rocks of the Kuri Formation at Iwami mine as a replace of gypsum, and rhyolite lava of the Kuri Formation at Nagatani. A closed mine for pottery stone is to the immediate south of Hontagi mine.

文献引用例

鹿野和彦・松浦浩久・沢田順弘・竹内圭史(1998) 石見大田及び大浦地域の地質。地 域地質研究報告(5万分の1地質図幅),地質調査所,118p.

BIBLIOGRAPHIC REFERENCE

Kano, K., Matsuura, H., Sawada, Y., Takeuchi, K. (1998) Geology of the Iwami-Öda and Oura Districts. With Geological Sheet Map at 1:50,000, Geol. Surv. Japan, 118p. (in Japanese with English abstract 5p.).

平成	10	年	1	月	27	日	Eſ] 吊	J								
平成	10	年	2	月	3	Η	発	行	ŕ								
				••						1.1	-	-	-11-1		L.		•
通路	百座	至弟	气省	¥_	Là	養 打	支行	行院	-	地		Ę	調	1	£	刅	ſ
						₹3	05-	8567	茨	城県	3	くば	市東	ŧ17	1日	1 -	· 3
						ЕD	刷	者	稲		李	亁		重			郎
						ED	刷	所	株:	式会社	ł		1		セ		ブ
									茨圳	成県-	っく	ばī	节天 ;	久保:	2 -	11 -	20
																	—

© 1998 Geological Survey of Japan