地域地質研究報告

5万分の1図幅

秋田(6) 第88号

吉岡地域の地質

北村 信・大沢 積・中川久夫

昭和58年

地質調査所
6 秋田

（）は 1:200,000図幅名
目次

I. 地形 …………………………………………………………………………………………………… 1
 I. 1 地形区分 ………………………………………………………………………………………… 1
 I. 2 高度分布及び傾斜区分 ………………………………………………………………………… 3
 I. 3 谷系及び谷密度 ………………………………………………………………………………… 3
 I. 4 起伏量 …………………………………………………………………………………………… 4
 I. 5 河岸及び谷底地形 ……………………………………………………………………………… 4

II. 地質概説 ……………………………………………………………………………………………… 4
 II. 1 研究史 …………………………………………………………………………………………… 4
 II. 2 地質の概要 ……………………………………………………………………………………… 6

III. 先新第三系 ……………………………………………………………………………………………10
 III. 1 利府層 …………………………………………………………………………………………… 10

IV. 新第三系 ………………………………………………………………………………………………10
 IV. 1 塩釜火砕岩 ……………………………………………………………………………………… 10
 IV. 2 入菅谷層 ……………………………………………………………………………………… 11
 IV. 3 大堤層 …………………………………………………………………………………………… 12
 IV. 4 番ヶ森山層 ……………………………………………………………………………………… 17
 IV. 5 青麻層 …………………………………………………………………………………………… 18
 IV. 6 七北田層 ………………………………………………………………………………………… 20
 IV. 7 大松沢層 ………………………………………………………………………………………… 21
 IV. 8 白沢層 …………………………………………………………………………………………… 21
 IV. 9 龟岡層 …………………………………………………………………………………………… 24
 IV. 10 峨の口層 ………………………………………………………………………………………… 26
 IV. 11 三本木層 ……………………………………………………………………………………… 29
 IV. 12 向山層 ………………………………………………………………………………………… 30
 IV. 13 宮床凝灰岩 ……………………………………………………………………………………… 30
 IV. 14 小野田層 ……………………………………………………………………………………… 33
 IV. 15 若畑層 …………………………………………………………………………………………… 33

V. 第四系 ……………………………………………………………………………………………………34
 V. 1 東原層 …………………………………………………………………………………………… 34
 V. 2 七ツ森火山岩 ……………………………………………………………………………………… 35
 V. 3 赤崩山安山岩 ……………………………………………………………………………………… 37
 V. 4 上嘉太神デイサイト ……………………………………………………………………………… 38
 V. 5 荒川火砕岩 ………………………………………………………………………………………… 38
第9表 白沢層の植物化石 ･･･23
第10表 竜の口層の海生貝化石 ･･･27
第11表 竜の口層の珪藻化石 ･･･28
第12表 若畑層の珪藻化石 ･･･34
第13表 七ツ森火山岩及び赤崩山安山岩の化学組成 ･･･35
吉岡地域の地質

北村信*・大沢穂**・中川久夫*

吉岡図幅地域の地質調査は、昭和56年度及び昭和57年度特定地質図幅の研究として行われたものである。本研究報告は、著者らの未発表資料（地形・第四系段丘堆積物及び沖積層は中川、そのほかは北村及び大沢）を基に、東北大学地質学古生物学教室未発表資料（安井、1962；菅原、1972；三浦、1972；市川、1972；菊田、1973；渡口、1975；特に礫崎、1976；浜田、1981；糟谷、1982）を参照し、更に、北村の総括的指示のもとに主として大沢がとりまとめた。本報告の作成に際し、東北大学理学部地質学古生物学教室の糟谷正雄及び遅沢壮一博士の協力をいただいた。以上の方々に特に感謝する。環境地質部地震地質課下川浩一技官によれば、本図幅地域内には確実な証拠をもつ活断層の存在が確認されなかった。本所東北出張所阿部智彦技官から七ツ森火山岩及び赤崩山安山岩の岩石薄片を借用し、上記岩石の記載の参考にさせて頂いた。岩石薄片の製作を安部正治技官にお願いした。

Ⅰ．地形

Ⅰ．地形区分

吉岡図幅地域は仙台市北方に位置し、本図幅地域西部には、奥羽山脈の山麓に当たる中起伏山地があり、中部及び東部は低平な丘陵地である。丘陵地の西部には、この斉一な丘陵背面から突出する孤立峰群がある。吉田川は本図幅地域の中央を西から東へ流れ、沿岸に河岸段丘が、東半では更に河岸平野が発達している。本図幅地域北西部は花川流域に属し、北隣の古川図幅地域西端部にかけて花川沿岸の段丘化した複合扇状地が広く発達している。本図幅地域の北西部はこの扇状地の扇頂部に当たる。中北部は、現在は吉田川の流域に含まれているが、上記の扇状地の南東端部に当たっている。中北部のごく一部は鳴瀬川の流域に属している。本図幅地域の南部から南隣の仙台図幅地域の北部にわたる七北田川流域にも、河岸段丘がよく発達している。以上の特徴から、本図幅地域は次の地形区に大別することができる（第1図及び第2図）。

Ⅰ．大畑山地

Ⅱ．七ツ森孤立峰及び丘陵地

Ⅲ．東黒川丘陵地

a．大衡丘陵

b．富谷丘陵

* 東北大学（昭和56年度及び昭和57年度地質調査所併任）
** 地質部
Ⅳ. 花川低地
Ⅴ. 吉田川低地
Ⅵ. 七北田川低地

山地及び丘陵地の分布は南北の、河谷は東西の方向性を示す。したがって、山地及び丘陵地の地形区は河川沿いの地形区に分断される。Ⅲの小地形区はこのように分断された地区のうち、面積の大きい部分である。他にも河川沿いの地形区によって小範囲ごとに山地及び丘陵地の主部から隔離された部分があるが、地形区分図上では特に小地形区名を与えないこととした。南北の方向性をもつ山地及び丘陵地の配列は、地質構造の発達過程と密接な関係をもち、現在の河谷群の発達以前の原地形の特徴を残すものである。
Ⅰ.2 高度分布及び傾斜区分

吉岡図幅地域内の最高所は西限中央部の海抜730mの地点である。その西方3kmに泉ヶ岳（海抜1,172m）、更に北西方1.6kmには北泉ケ岳（海抜1,253m）がある。北泉ケ岳の北東側の山脚は南東方と北東方とに分岐し、それぞれ麓山と高倉山へと延び、その東斜面が本図幅地域に達している。上記の730m地点は蘭山の東斜面に当たる。これらの山麓斜面は東方へいずれも海抜450m以下にまで低下し、その東側に赤崩山（海抜620.9m）及び大畑山（海抜563.5m）の山地が高まっている。

大畑山地の東縁は海抜約250–300m付近であって、それ以東は丘陵地である。丘陵地の一般の頂高は西部で130–300m、中部及び東部で60–130mで、それぞれ南側がやや高い山地の東縁部から丘陵地の西部にかけて、高さのよく揃った丘陵頂より格段と高い孤立峰群があり、周囲を急斜面で囲まれている。顕著なものは達つ居（海抜262.6m）・たがら森（海抜230m）・達倉山（海抜307.8m）・鎌倉山（海抜300m）・鉢倉山（海抜293m）・大倉山（海抜327.1m）・屏風岳（海抜291m）などであって、周囲の岩石より堅硬なデイサイト（一部安山岩）の溶岩円頂丘からなる。丘陵背面の高さが東方へやや急に低くなるのはこれらの孤立峰の分布区域とその南方延長の一帯である。

この孤立峰を伴う丘陵地（七ツ森孤立峰及び丘陵地）の北部では、花川の右岸に高さ130–200mの丘陵頂に平坦面がやや広く分布する。また、赤崩山・長倉山付近などには丘陵頂や斜面などの高所に小規模な平坦地形が散在する。

これより東の大衡丘陵地及び富谷丘陵地の頂高は大部分で60–130mであるが、南西部の堂庭山付近以西は140–300mと高く、特に堂庭山（海抜252.3m）とその北方の海抜200.3mの高地は周囲より突出している。また、本図幅地域南東部には大亀山（海抜110m）・石倉山（海抜130.2m）・愛宕山（海抜140m）・亀山（海抜174.5m）など、稜線に沿って周囲よりやや急に高まっている部分がある。

Ⅰ.3 谷系及び谷密度

吉岡図幅地域の大部分は吉田川の流域に含まれている。北東端部の小範囲が花川の、中北部のごく小区域が鳴瀬川の、南西部及び南端部が七北田川の各流域に属している。吉田川の本流は大畑山の西からその北をまわって東へ向かい、途中で赤崩山の南から流れ出す支流の赤川を合して、本図幅地域の北西部から中央部に達し、そこで北側から善川、南側から宮床川を合流させ、東流を続けて南側から西川を合し、東隣松島図幅地域へ入って本図幅地域の北東部に流域をもつ支流の鶴田川を合流させている。七北田川は本図幅地域の南西部を南東方へ流れ、南隣仙台図幅地域へ入って富谷丘陵の南側を東南東に向かい太平洋に注ぐ。吉田川と七北田川の分水界は富谷丘陵の南縁部に偏在している。

吉田川の谷系は全体としては樹枝状の配置を示し、本流の位置は流域の中心線に近い。しかし、部分的には樹枝状の配置が乱れた所がある。本図幅地域南西部から南部にかけての吉田川の支谷と七北田川
本流の谷及び支谷には、北西～南東方向に延びる部分が多い。特に堂庭山の周辺でこの傾向が顕著である。丘陵地西部の孤立峰の周囲では谷系はそれらに制約されて、部分的に放射状となり、また南川は孤立峰の群立する七ツ森を迂回している。

隣接する花川・吉田川及び七北田川の流域間では谷底の高さに差があり、本図幅地域西部では吉田川流域の谷底は分水界を挟んで近接する他の河川流域の谷底より高い。本図幅地域中央部の善川流域の段丘は、花川沿岸の複合扇状地の一部であるが、花川は扇状地を下刻して善川流域との間で段丘をなしている。一方、吉田川と七北田川間の分水界付近には両河川の支谷が上流部で連絡し、谷中分水界をなしている所がある。本図幅地域中南部の明通付近で竹林川の支谷は、七北田で合流する七北田川の支谷と通じている。南東部の山田の南で西川の支流は、入菅谷の南東で七北田川沿岸低地に開く何谷と連絡する。いずれの場合も両側の河谷は一線上に位置している。明通付近では明瞭に河谷の争奪を示すような谷の配置はないが、山田の南では分水界より南側に北へ向かって合流する小支谷がある。山田付近では吉田川流域の谷底の方が七北田川流域よりも低い。このことは西川の谷底が現在の入菅谷側の谷底よりも高かった時に争奪が行われたことを示している。吉田川流域内でも、支流間の分水界付近に争奪の痕跡が認められる所がある。山田の東方の小鎌沢で、西川の支谷は逆転状に屈曲が、その屈曲部は分水界を挟んで山崎川の支谷の延長線上にある。分水界は谷中にあるが、両側ともその分水界に向かって急に谷底高を増している。また、本図幅地域中央部の富谷ニュータウン東方の富谷ゴルフ場付近にもこれと類似した地形が見られる。

I.4 起 伏 量

吉岡図幅地域の起伏量は、中部～東部の東黒川丘陵地で小さく、50m未満及び50-100mの区域が大部分を占め、南東部にわずかに100-150mに相当する地区がある。吉田川低地では起伏量は更に小さく、1km平方の範囲で數m以下である。七ツ森孤立峰及び丘陵地では孤立峰群が丘陵背面から突出するため、その部分で起伏量が200-300m及び300-400mに達する所がある。これらの孤立峰は周囲の地形高と不調和で、これを除けば起伏量は東部の丘陵地と大差がない。本図幅地域西部の大畑山地では頂高500-700mに対して開析谷底の標高は200-300mで、起伏量では200-400mの部分が多い。

I.5 河岸及び谷底地形

吉岡図幅地域の諸河川に沿って段丘群がよく発達し、中北部及び東半部では河岸平野が分布する。このことについては、段丘堆積物及び沖積層の項で述べられている。

II. 地 質 概 説

II.1 研 究 史
吉岡図幅地域は、東北地方緑色凝灰岩地域内の北上川河谷地域（北村、1959）に属し、本図幅地域の地質は、新第三系及びこれを被覆する第四系からなる。

本図幅地域の西隣関山嶺図幅地域に位置する船形火山の地質は、小倉（1921）によって初めて報告された。このなかで小倉は船形火山の基盤をなし新第三系は吉岡西方をへて仙台市西方まで連続して分布することを明らかにした。また、小倉はこの新第三系が仙台市周辺に分布する鮮新続の上部埋木層及び中部埋木層に相当することを確かめた。

東北大学理学部地質学古生物学教室で行われた中村（1941, MS）の富谷地塊の研究によって本図幅地域の新第三系の層序が確立された。HANZAWA et al. （1953）はこれまでの地質学古生物学教室の教官及び学生の業績を集大成した。この間 Nomura and Hatai（1938）・Okutsu（1950）などによって、化石に関する研究が進められ、本図幅地域の新第三系の層序及び地質年代に関する資料が蓄積された。

地質調査所の埋炭調査三本木亜炭田について尾崎ほか（1947, MS）・山口ほか（1947, MS）などが担当し、主として本図幅地域北東部吉岡以北の新第三系の層序と亜炭賦存の実態調査を行った。庄司（1954・1958）は三本木亜炭田の調査を行い、中新続を小野層及び長尾層として区分し、その上位の鮮新続の堆積学的研究を行っている。その中で庄司は堆積前後層の概念を導入し、亜炭の堆積環境を論じた。また、宮床凝灰岩の異常な層序の位置づけを指摘し、鮮新続堆積時における火山活動の産物であることを明らかにした。

ISHIDA（1962）は七北田及び三本木地域の地質を再検討し、主として宮床凝灰岩の積成機構に関する研究を行い、これが下位の各層を著しい不整合で覆う火砕流堆積物であることを明らかにした。

その後、東北大学地質学古生物学教室において、筆者の一人北村の指導のもとに、本図幅地域及び隣接図幅地域の層序・地質構造などを究明すべく調査研究が継続されている。これらのうちで、特に安井（1962, MS）・菅原（1972, MS）・三浦（1972, MS）・市川（1972, MS）・菊田（1973, MS）・滝口（1975, MS）・柳崎（1976, MS）・浜田（1981, MS）・糟谷（1982, MS）などによる研究成果は、本図幅地域の層序・地質構造・地質年代・堆積環境などに関する多数の新事実を提供している。

ISHIDA（1981）は鮮新続以上の層序の研究を行い、三本木・吉岡などの各地塊は、第四紀に入って造盆地運動の隆起帯としての役割を果したと論じた。

吉岡図幅地域は、東北地方緑色凝灰岩地域内の北上川河谷地域（北村，1959）に属する。本図幅地域の主部は、富谷地塊と呼ばれて、七北田川を隔てて、南側の仙台市街地区の北縁を形成する丘陵地帯となっている。富谷地塊の東部は、松島湾北部丘陵となり、東隣松島図幅地域内に含まれる。一方、富谷地塊の西部は、西隣関山図幅地域内の船形山及び泉ヶ岳の火山地帯に連続する。また、仙台市丘陵地帯南東限に推定されている“長町―利府”構造線は、南端の塩釜地塊との境界低地帯内に伏在すると考えられるが、第四紀に活動したと言う証拠はない。本図幅地域北部に北隣古川図幅地域からの連続である三本木地塊の一部が含まれ、富谷地塊との間に吉田川沿岸の沖積平野が広がり、直接の繋がりが断たれている。三本木地塊の西縁部に推定されていた“三本木断層”の存在は、本図幅地域内でも否定され、同断層は三本木層撓曲部の層理面に沿った上位の宮床凝灰岩の重力滑動による層面滑りに過ぎない（第12図及び第13図）。

<table>
<thead>
<tr>
<th>時代</th>
<th>層序</th>
<th>模式図</th>
<th>岩質</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>第新世</td>
<td>第新世</td>
<td>酸性凝灰岩（70-200）</td>
<td>酸性凝灰岩（70-200）</td>
<td>8 Ma, 13 Ma (K-Ar法)</td>
</tr>
<tr>
<td>第新世</td>
<td>第新世</td>
<td>相模層（90-150）</td>
<td>相模層（90-150）</td>
<td>Box's Zone N16-17 (変帯層)</td>
</tr>
<tr>
<td>第新世</td>
<td>第新世</td>
<td>槇沢層（30-120）</td>
<td>槇沢層（30-120）</td>
<td>Box's Zone N12-14 (変帯層)</td>
</tr>
<tr>
<td>第新世</td>
<td>第新世</td>
<td>下田層（150-250）</td>
<td>下田層（150-250）</td>
<td>22.3 Ma (K-Ar法)</td>
</tr>
</tbody>
</table>

第3図 吉岡図幅地域の地質総括図
m以上である。豊富に産出する化石から、本層の年代は三畳紀中期で Anisian-Ladinian である。

新第三系は、下位から塩釜火砕岩・入菅谷層・大堤層・番ヶ森山層・青麻層・七北田層・大松沢層・白沢層・亀岡層・竜の口層・三本木層・向山層・宮床凝灰岩・小野田層及び若畑層に分けられる。白沢層及び同層より下位の各層は中新統に属し、亀岡層及び同層より上位の各層は鮮新統に属する。

塩釜火砕岩は新第三系の最下位を占めて、本図幅地域南東部にわずかに分布し、主として輝石安山岩火碎岩からなり、凝灰質砂岩などを伴っている。層厚は150-250mである。年代測定の結果から、本層の年代は中新世前期である。

入菅谷層は塩釜火砕岩を除く新第三系の最下位を占めて、本図幅地域南東部に分布している。主として凝灰質中粒砂岩及び凝灰質シルト岩からなり、軽石凝灰岩・粗粒凝灰岩を伴っていて、層厚は50m+である。貝化石及び珪藻化石を産する。

大堤層は本図幅地域南西部に分布し、南西部での新第三系の最下位を占めている。主として輝石安山岩火碎岩・細粒―粗粒砂岩及び軽石岩からなり、酸性凝灰岩・シルト岩などを伴っている。層厚は320m+である。貝化石・有孔虫化石などを産する。産出する浮遊性有孔虫化石によって Blow（1969）の Zone N.12-14に位置し、本層の年代は中新世中期である。

番ヶ森山層は入菅谷層を非整合に被覆して、本図幅地域南東部に分布している。主として斜層理のある軽石質砂岩からなり、層厚は30-120mである。本層中からまれに貝化石を産する。

青麻層は大堤層及び番ヶ森山層を整合に被覆して、本図幅地域南東部（一部南西部）に広く分布している。主として斜層理のある砂岩・中粒砂岩からなり、軽石凝灰岩・細粒凝灰岩・軽石岩を伴っている。層厚は50-220mである。有孔虫化石・貝化石などを産する。本層の上半部で産出する浮遊性有孔虫化石によると Blow（1969）の Zone N.16-17に対応し、本層の年代は、中新世後期である。

七北田層は大堤層及び青麻層を整合に被覆して、本図幅地域南西部・中部及び中南部に広く分布していて、主として細粒―中粒砂岩からなり、シルト岩・細粒凝灰岩・軽石岩などに伴っている。層厚は90-150mである。有孔虫化石・貝化石・珪藻化石を産する。

竜の口層は亀岡層を整合に被覆して、本図幅地域中北部に分布する。主としてシルト岩及び細粒砂岩からなり、珪藻泥岩を伴っている。層厚は50-60mであって、貝化石・珪藻化石を産する。これからの化石から鮮新世である。

三本木層は竜の口層を不整合に被覆して、本図幅地域中北部に分布している。主として細粒―粗粒砂岩及びシルト岩からなり、細粒―軽石凝灰岩・軽石岩と亀炭を伴っている。層厚は50-70mである。植物
化石を産する。

向山層は三木層と時期異相であって、竜の口層を不整合に被覆し、本図幅地域南西端部にわずかに分布している。主として中粒～粗粒砂岩及び細粒～軽石凝灰岩からなり、シルト岩及び粘土を伴っている。層厚は25～40mである。

宮床凝灰岩は大堤層・青麻層・七北田層及び竜の口層を不整合に、三木層を整合に被覆していて、本図幅地域西半部に広く分布している。主として酸性軽石凝灰岩からなり、火山礫凝灰岩・凝灰角礫岩・凝灰質シルト岩などを伴っている。本凝灰岩は、下位層に由来する巨大な岩塊を多量に取り込んでいる。厚さは30～250mである。

小野田層は宮床凝灰岩を整合に被覆して、本図幅北端部にわずかに分布している。主として軽石凝灰岩・シルト岩及び砂岩からなり、礫岩及び粘土を伴っている。層厚は50～100mである。

若畑層は宮床凝灰岩を整合に被覆して、本図幅中部に不整合に分布している。主としてシルト岩・細粒～中粒砂岩及び軽石凝灰岩からなり、泥岩を伴っている。層厚は150～200mである。植物化石及び淡水棲珪藻化石を産する。

第四系は下位から東原層・七ツ森火山岩・赤崩山安山岩・上嘉太神デイサイト・段丘堆積物及び沖積層に分けられる。沖積層は完新統に属するが、他はすべて更新統である。

東原層は三木層・宮床凝灰岩及び小野田層を不整合に被覆して、本図幅中部に広く分布している。主として軽石凝灰岩及び礫岩からなり、火山礫凝灰岩・砂岩・シルト岩などを伴っている。層厚は20～30mである。

七ツ森火山岩は七北田層及び宮床凝灰岩を貫いて、本図幅中部に分布している。（角閃石含有）輝石デイサイト溶岩とし、安山岩溶岩を伴っている。溶岩円頂丘を形成し、これら溶岩円頂丘は環状に並んでいる。岩石が新鮮であり、また溶岩円頂丘の火山地形をよく保存していて、鮮新世後期から更新世前期、恐らく大部分のものは更新世前期に噴出したものであろう。

赤崩山安山岩は宮床凝灰岩及び若畑層を不整合に被覆して、本図幅中部に分布している。（かんらん石含有）輝石安山岩溶岩及び同質火砕岩を主とし、下部に凝灰質砂岩及びシルト岩を伴っている。厚さは150～250mである。

上嘉太神デイサイトは若畑層を貫き、赤崩山安山岩と同時期であって、本図幅中部に分布している。酸化角閃石含有輝石デイサイト溶岩からなり、数個の溶岩円頂丘から構成されている。

荒川火砕岩は宮床凝灰岩及び若畑層を不整合に被覆し、本図幅中部に分布している。輝石安山岩火砕岩及び火山泥流堆積物からなる。恐らく船形火山噴出物に属すると考えられる。火山泥流堆積物は後述の高位段丘が形成されたころに流下したものであろう。

段丘堆積物は本図幅全域に分布し、礫・砂及び泥を主とし、火山灰を伴っている。段丘は下位から最高位段丘・高位段丘・中位段丘・低位段丘及び最低位段丘に分けられる。

沖積層は吉田川及び同支流をはじめとする吉岡付近より下流の河道沿って自然堤防が断続的に分布している。

以上本図幅地域の地層や岩石の概略を述べたが、次に本図幅地域の地質構造及び構造発達史について
述べる1)。富谷地塊主部は中新統の入菅谷層・番ヶ森山層・青麻層・七北田層などによって構成され、
NNE-SSWに延びた緩やかな背斜状隆起帯を形成している。本図幅地域の西半部には宮床凝灰岩が
広域に分布し、一部に大堤層のドーム状隆起部を内座層として露出している。その南縁に沿って七北田
層が取り囲み、緩やかに南に傾斜して仙台市を中心とした鮮新統堆積盆地の基盤を構成する。

以上のようによれば本図幅地域は比較的穏やかな地質構造を示し、堆積相の特徴から見ても、安定した地殻
上の堆積物で、中新統堆積後も著しい地殻変動を被らなかった地域とみなされる。中新世後期より鮮新
世前期までの間に、海進及び隆起の現象が、本図幅地域南西部に分布する白沢層の存在によって認め
されるが、造構運動の影響はあまり強くなかった地域であったと考えられる。

鮮新世後期の宮床凝灰岩の堆積時には、西方地域における火山活動が活発に行われ、多量の火山噴出
物放出後の広域な隕没に伴って、大岩塊を含む特殊な火山碎屑岩の混然とした層相を形成するにいたっ
たと考えられる。

第4図に宮床凝灰岩及びそれ以後の岩層を示す。この図で分かるように、鮮新世後期から更新世前期
にかけて次のような順序で湖成層の堆積及び火山岩の噴出が行われたと考えられる。

1. 宮床凝灰岩の堆積末期に若柄一帯で隕没があり、非常に軟弱なシルト岩・細粒～中粒砂岩及び軽
石凝灰岩からなる湖成層の若柄層が堆積した。

2. このころに環状の割目が生じ、（角閃石含有）輝石ディサイト（一部安山岩）からなる多数の溶

第4図 吉岡図幅地域北西部（一部閑山崩図幅地域） 赤沢山一帯地区の地質略図

1) 東北地方の広域にわたる地域の構造発達史については、北村（1959）の研究がある。
岩円頂丘（七ツ森火山岩）が噴出した。

3. その後、環状構造の北西寄りに赤崩山安山岩及び上嘉太神ディサイトが噴出した。初めに輝石火
砕岩を、つづいて酸化角閃石含有輝石ディサイトの多数の溶岩円頂丘及び（かんらん石含有）輝石安山
岩溶岩が流出したと考えられる。これら火山岩の噴出は、船形火山噴出物に属すると考えられる荒川火
砕岩の先駆的な火山活動であろう。

III. 先新第三系

III.1 利府層

利府層（命名：市川，1951）

利府層は、本図幅地域新第三系の基盤を構成して、本図幅地域南東端部にわずかに分布し、主として
暗灰色硬質頁岩からなる。

模式地 宮城県利府町浜田約1kmの採石場付近であって、本図幅地域内には良い露出がない。

分布及び層厚 利府町宮前南々東方にわずかに分布している。層厚は下限が不明であるが、地表に露
出する範囲内で700m以上である。

岩相 主として薄く葉理の発達した暗灰色硬質頁岩からなり、細粒砂岩を挟んでいる。頁岩は緻密、
堅硬である。砂岩は頁岩と数10cmからときに2m程度の厚さで互層している。

層位関係及び化石 本層よりも下位の地層が露出していないので下限は不明である。本層中から多く
の軟体動物化石が産出するほか、腕足動物化石・魚類化石などが知られている。Bando（1963）によれ
ば、本層の年代は三畳紀中期でAnisian-Ladinianである。

IV. 新第三系

IV.1 塩釜火砕岩

塩釜火砕岩（命名：Hanzawa et al．（1953）の塩釜集塊岩に相当し、藤田・小池（1953）及び柴田
（1967）によって塩釜火砕岩層と命名され、北村（1979）によって塩釜火砕岩と呼ばれた）。

塩釜火砕岩は本図幅地域の新第三系の最下位を占めて、本図幅地域南東端部にわずかに分布し、主と
して輝石安山岩火砕岩からなる。

模式地 宮城県塩釜市塩釜神社境内であって、本図幅地域内では利府町宮前付近で見られる。

分布及び層厚 利府町宮前付近わずかに分布し、層厚は石井ほか（1982）によれば、150-250mで
ある。

岩相 主として輝石安山岩凝灰角礫岩及び火山角礫岩からなり、火山礫凝灰岩・凝灰岩・凝灰質砂岩
などを伴っている。これら火砕岩は暗紫褐色～暗青灰色、比較的新鮮であって、角礫と基質との固結度
が良い、層理不明瞭である。
第6図 吉岡図版地域東半部の新第三系の柱状図（長内, 1981, MS,一部改訂）
層位関係及び化石 東隣松島図幅地域内で三畳系の利府層を不整合に被覆している。塩釜火砕岩中から末だ化石は発見されていない。本火砕岩中の安山岩角礫について、今田・植田（1980）によってK-Ar法で22.3×10⁶の放射年代が報告されていて、本層の年代は中新世前期である。

IV. 2 入菅谷層

入菅谷層（命名：菅原，1972，MS）

本層は東隣松島図幅地域（石井ほか，1982）の幡谷層と、その上位の鹿島台層とを含めたものに相当する。東北大学の調査結果（浜田，1981，MS）によれば、幡谷層と鹿島台層とは、一部不整合関係にあることが確認されている。入菅谷層は松島図幅地域の幡谷層と鹿島台層との両方の岩相的特徴を示し、両者の不整合関係が若干上位の層準が本圖幅地域内に分布していると考えられる。入菅谷層という名称は、既に菅原（1972，MS）以来使用されており、幡谷層と鹿島台層とのいずれかに統一する必要を認めないので、この慣用的名称を生かすこととした。

入菅谷層は塩釜火砕岩以外の新第三系の最下位を占めて、本図幅地域南東部に分布し、主として凝灰質中粒砂岩及び凝灰質シルト岩からなる（第5図及び第6図）。

模式地 宮城県利府町入菅谷付近の砂押川沿岸一帯である。

分布及び層厚 模式地一帯・利府町宮の前東北の沢及び金生の北西の沢に分布し、層厚は50m+である。

岩相 模式地付近では、厚さ1.0-1.5m単位の青灰色凝灰質中粒砂岩と厚さ1.0-0.2m単位の灰白色凝灰質シルト岩が互層状に累積する。凝灰質中粒砂岩は7層数えられ、いずれも特徴のある砂管及び貝化石を含み、東隣松島図幅地域内の鹿島台層主部の岩相に酷似している。模式地における本層下部には平行ラミナないしリップルラミナの発達した暗灰青色シルト岩の発達が認められ、この岩相は幡谷層のものに似ている。

模式地東方の小沢で東北新幹線のトンネルが開設する地点では、凝灰質粗粒中粒砂岩（厚さ2m+）とそれを不規則な浸食面をもって覆う暗青灰色シルト岩が観察される。このシルト岩には平行ラミナが顕著に発達し、一部スランプ構造を伴いながら軽石薄層を挟んでいる。同様なシルト岩は南隣仙台図幅地域内の県民の森付近でも認められ、ともに模式地の幡谷層に
第1表 入菅谷層の珪藻化石

磯崎カイジウシ属	*Actinocyclus ingens* Ratt
瓣状カイジウシ属	*A. undulatus* (Ball.) Ralf
瓣状カイジウシ属	*Coscinodiscus endoi* Kanaya
短幅帯カイジウシ属	*C. marginatus* Ehr.
シルクカイジウシ属	*C. yabei* Kanaya
デンティカルスポリス属	*Denticulopsis hustedtii* (Simonsen and Kanaya) Simonsen
ミクロスフェルス属	*D. nicobarica* (Grun.) Simonsen
ペイジカイジウシ属	*C. praedimorpha* (Akiba) Barron
ガンナーギオセリウム属	*Goniathecium rogersii* Ehr.
メディアリア属	*Mediaria splendidida* Shesh
リリウムカンソウ属	*Rhizosolenia barboi* (Grun.) Temp. and Perag.
ルービアカニストタ属	*Rowxia californica* Perag.

部のシルト岩に対比される可能性がある。

宮ノ前北西の沢上流部では、上位の番ヶ鼻山層基底の斜層理の顕著な砂岩に覆われて本層の分布が認められる。ここでは、下位より青灰色凝灰質砂岩（厚さ2m±）・リップルラミナの顕著な青灰色シルト岩（厚さ0.5-1.0m）・軽石薄層（厚さ0.2m）の2層を挟む青灰色凝灰質砂岩・混青灰色シルト岩（厚さ3-4m）・青灰色軽石凝灰岩（厚さ0.7m）・軽石層（厚さ0.4m）・青灰色凝灰質砂岩（厚さ1.3m）・白色細粒凝灰岩（厚さ0.5m）及び青灰色凝灰質砂岩の順に重なっている。この層序は模式地の層序にほぼ対応し、更に東方の金生北西の沢沿いにも露出している。

層位関係
東隣松島図幅地域内では、石井ほか（1982）によれば幡谷層主部とその下部の白坂山凝灰岩部層とは整合関係にあるとされているが、本図幅地域内では下位層との関係は不明である。

化石
模式地の入菅谷付近の凝灰質砂岩及びシルト岩から*Buccinum ?*sp.、*Chlamys cf. kaneharai*（YOKOYAMA）、*Macoma* sp.などの貝化石を産出するほか、第1表に示すような珪藻化石を産出した。

IV.3 大 堤 層

大堤層（命名：中村, 1941, MS）

大堤層は本図幅地域南西部の新第三系の最下位層をなし、本図幅地域南部に分布し、主として輝石安山岩火砕岩・砂岩及び礫岩からなる（第7図及び第8図）。

模式地
宮城県泉市宮床川最上流堂所北方一帯である。

分布及び層厚
宮床川上流一帯付近に分布する。ほかに、泉市長谷倉川上流及び屏風ヶ岳南西麓にわずかに分布している。層厚は320m±（下限不明）である。

岩相
輝石安山岩火砕岩・砂岩及び礫岩を主とし、酸性凝灰岩、ときにシルト岩・輝石安山岩溶岩及び無斑晶質の玄武岩溶岩を伴っている。輝石安山岩火砕岩は凝灰角礫岩・火山円礫岩・火山角礫岩及び火山礫凝灰岩からなり、軽石（ときに顆頭大）の暗灰色、斑状の火山岩塊を火山礫を有する凝灰質物質が
第 8 図 吉岡田園地域南部の新第三系の柱状図（横谷，1982，MS，一部改訂）
充填している。一般に角礫と基質との境は明瞭
あって、両者の固結度がよい。これから角礫の中には円味を帯びているものもある。この安山
岩火砕岩の厚さは50-100mであって、岩質はや
や変質した紫蘇輝石普通輝石安山岩である。砂
岩は細粒一粗粒、堅硬、凝灰質、礫質であって、
ときに斜層理を示す。礫岩の礫は細礫一巨礫ま
であり、安山岩礫が多い。一般的に見て固結度
がよいときに石灰質である。模式地に分布す
る本層は、糟谷(1982, MS)によれば、下位
から上位に向かって次のように重なっている。
シルト岩を主とし、砂岩及び粗粒凝灰岩を挟
む（厚さ約20m）
酸性凝灰岩と安山岩凝灰岩の互層（厚さ約40
m）
凝灰質礫質砂岩を主とし上部に細粒一中粒砂岩（厚さ約55m）
石灰質礫岩（厚さ約45m）
礫岩及礫質砂岩を主とする（厚さ約45m）
軽石凝灰岩（厚さ約13m）
石灰質礫岩（厚さ約20m）
斜層理を示す中粒砂岩を主とする（厚さ約20m）
層位関係 本層の下限は露出がなく、下位層との関係は不明である。
化石 本層中から海生貝化石・浮遊性有孔虫化石・底生有孔虫化石及び石灰質ナンノプランクトン化石
を産する（第2表・第3表・第4表及び第5表）。
また、貝形虫化石を産し、本層の安山岩礫には、しばしば穿孔貝生痕化石が見られる。
糟谷（1982, MS）によれば、大塩層上部から浮遊性有孔虫化石 Globorotalia cf. siakensis（Le-
Roy）を産し、また笠原（1974）は本層最下部から Globorotalia mioeza conoidea Walters及び
Globorotalia mioeza mioeza Finlay を出している。従って、大塩層はBlow（1969）のZone N.12
からZone N.14の間に含まれ、本層の年代は中新世中期である。また、大塩層中部より石灰質ナンノ
プランクトン化石 Coccolithus miopelagicus Bukry を産し Cyclicargolithus floridanus （Roth
and Hay）を産しないことから、Okada and Bukry（1980）のCN 5 b Zone にあたる。これは浮遊
性有孔虫の結果と矛盾しない。
第2表 大隠層の海生貝化石（橋谷, 1982, MS）

<table>
<thead>
<tr>
<th>地名</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>PELEYCYPPODA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlamys kaneharai (YOKYAMA)</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlamys cf. kaneharai (YOKYAMA)</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlamys miyamotoensis (NOMURA and HATAI)</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlamys sp.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miculhopentep sp.</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miyagipecten matsumoriensis MASUDA</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRACHIOPODA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coptothyris sp.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARTHROPODA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balanus sp.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

産地
2. 3, 4は第4表と同じ
5. 永市内照西南方約0.3km長谷倉川沿い
6. 永市境北北方約0.6km沿い
7. 永市界照山頂東南方漕川沿い

第3表 大隠層の浮遊性有孔虫化石（橋谷, 1982, MS）

<table>
<thead>
<tr>
<th>地名</th>
<th>3</th>
<th>4</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Globigerina praebulloides Blow</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>G. falconensis Blow</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Globigerinita glutinata (EGGER)</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Globigerinoides quadrilobatus immaturus LEROY</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Globorotalia continuosa Blow</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G. cultrata (d'ORBIGNY)</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G. cf. siakensis (LEROY)</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>G. scitula (BRADY)</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orbula suturalis BRÖNNIMANN</td>
<td>+</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

産地
3. 4及び8は第4表と同じ

第4表 大隠層の有孔虫化石（橋谷, 1982, MS）

<table>
<thead>
<tr>
<th>地名</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGGLUNATED FORAMINIFERA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Martinottiella communis (d'ORBIGNY)</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siphotextularia sp. A</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CALCAREOUS FORAMINIFERA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphicoryna pacificolitata (CUSHMAN)</td>
<td>R</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. sp. A</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anomalinoidea glabrata (CUSHMAN)</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. sp.</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Astronomion sp.</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bolivina sp. B</td>
<td>C</td>
<td>R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>産 地</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Buccella cf. frigida (CUSHMAN)</td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Cassidulina cf. yabei ASANO and NAKAMURA</td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>C. sp.</td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Cibicides aknerinus (d'ORBIGNY)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. lobatulus (WALKER and JACOB)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. mediocris FINLAY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. cf. refugens MONTFORT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. tani IWASA and KIKUCHI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. sp.</td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>C. spp.</td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td>F</td>
</tr>
<tr>
<td>Dentalina inflexa REUSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. sp.</td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Discorbinella sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discorbis cf. australis PARK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. sp. A</td>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>D. sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discorbirta sp. A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elphidium cf. sendaiense TAKAYANAGI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eponides repandus (FICHTEL and MOLL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fissurina marginata (MONTAGU)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. orbignyana SPEGUENZA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fursenkoina mexicana (CUSHMAN)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glabratella cf. obtusa ROUVILLOIS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G. cf. opercularis (d'ORBIGNY)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G. ozawai (ASANO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G. ? sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Globocassidulina margareta (KARRER)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G. nipponensis EADE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G. cf. nipponensis EADE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G. sp. A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G. sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guttulina kishinouyi CUSHMAN and OZAWA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hanzawaia nipponica ASANO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. tagaensis ASANO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heronallenia sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyalinea? sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lagena apiopleura LOEBLICH and TAPPAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lenticulina nicobarensis (SCHWAGER)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. orbicularis (d'ORBIGNY)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melonis aomoriensis (ASANO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. nicobarensis (CUSHMAN)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>産地</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>M. pacificus (CUSHMAN)</td>
<td>F</td>
<td>R</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. pompilioides (FICHEL and MOLL)</td>
<td>F</td>
<td>R</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nodosaria longiscata d'ORBIGNY</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Nonionella sp. A</td>
<td>R</td>
<td>R</td>
<td>F</td>
<td>F</td>
<td>R</td>
</tr>
<tr>
<td>Oolina melo d'ORBIGNY</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Planulinoides sp.</td>
<td>R</td>
<td>R</td>
<td>F</td>
<td>F</td>
<td>R</td>
</tr>
<tr>
<td>Forosoratalia sp.</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>Pullenia bulboides (d'ORBIGNY)</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>R</td>
</tr>
<tr>
<td>P. sp.</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>R</td>
</tr>
<tr>
<td>Rosalina bradyi (CUSHMAN)</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>R</td>
</tr>
<tr>
<td>R. sp.</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>R</td>
</tr>
<tr>
<td>Sigmomorpha sp.</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>R</td>
</tr>
<tr>
<td>Sphaeroidina japonica ASANO</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>R</td>
</tr>
<tr>
<td>Stilostomella lepidula (SCHWAGER)</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>R</td>
</tr>
<tr>
<td>Trifarina hughesi (GALLOWAY and WISSLER)</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>R</td>
</tr>
<tr>
<td>T. kokoeraensis (ASANO)</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>R</td>
</tr>
<tr>
<td>T. sp.</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>R</td>
</tr>
<tr>
<td>Vaginulina sp.</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>R</td>
</tr>
<tr>
<td>Valvulineria niponica ASANO</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>R</td>
</tr>
</tbody>
</table>

産地
1. 大和町宮床川上流泉岩東方約2.6km町塚の沢沿い
2. 大和町宮床川上流泉岩東方約1.4km沢沿い
3. 大和町宮床川上流泉岩東方約1.2km沢沿い
4. 泉岩山東側の東西約2.5km沢沿い
5. 大和町宮床川上流大塚の豫定の水下の南側

第5表 大堤層のナノプラントトン化石（横谷，1982，MS）

<table>
<thead>
<tr>
<th>産地</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calciscus leptophorus (MURRAY and BLACKMANN) LOEBLICH and TAPPAN</td>
<td>F</td>
<td>V</td>
</tr>
<tr>
<td>C. macintyre (BUKKY and BRAMLETTE) LOEBLICH and TAPPAN</td>
<td>F</td>
<td>V</td>
</tr>
<tr>
<td>Coccolithus miopelagicus BUKNY</td>
<td>F</td>
<td>R</td>
</tr>
<tr>
<td>C. pelagicus (WALLICH) SCHILLER</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Cricolithus jonesi COHEN</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Dictyococites antarctica HAQ</td>
<td>R</td>
<td>F</td>
</tr>
<tr>
<td>Discocaster variabilis MARTINI and BRAMLETTE</td>
<td>—</td>
<td>R</td>
</tr>
<tr>
<td>Discocitha japonica TAKAYAMA</td>
<td>—</td>
<td>V</td>
</tr>
<tr>
<td>Helicosphaera carteri (WALLICH) KAMPTNER</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>H. cf. sellii (BUKKY and BRAMLETTE) JAFAR and MARTINI</td>
<td>—</td>
<td>V</td>
</tr>
<tr>
<td>Reticulofenestra pseudoumbilica (GARTNER) GARTNER</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Spheno lithus moriformis (BRÖNNIMANN and STRANDER) BRAMLETTE and WILCOXON</td>
<td>—</td>
<td>V</td>
</tr>
<tr>
<td>Total abundance</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Preservation</td>
<td>P</td>
<td>P</td>
</tr>
</tbody>
</table>

産地 3 及び 4 は第4表と同じ
番ケ森山層（命名：北村，1979）

HANZAWA et al. (1953) の青麻層下部，松島図幅域（石井ほか，1982）の番ケ森山層下部に限定して，この層名を使用することとした．本図幅域の主部を占める富谷地塊では，従来斜層理の著しい砂岩を一括して青麻層と呼んでいたが，東部の番ケ森山を中心とする地域では，白坂山凝灰岩層をも含めた番ケ森層という地層の存在が認識されてきた．安井（1962，MS）は，番ケ森山層と白坂山凝灰岩層は一部不整合関係をもって分離されることを明らかにし，次いで菅原（1972，MS）は番ケ森層と青麻層との層位関係の誤解を避けるため，下位の番ケ森層相当層を中鈴層に，上位の青麻層相当層を板谷砂岩として層序区分することに成功した．浜田（1981，MS）は，更に両層の境界を広域に追跡して，菅原の中鈴層と板谷砂岩という名称を若干の訂正を加えて，下位を番ケ森山層，上位を青麻層とした．松島図幅域（石井ほか，1982）では上述の両層を合わせて番ケ森山層と一括し，青麻層を上部，番ケ森山層を下部とすることが提唱された．しかし，青麻層の名称は古くから富谷地塊で慣用されており，古生物学的な研究報告にも，この層名がしばしば引用されていることもあるので，この名称を存続させることにした．

番ケ森山層は入菅谷層を被覆して，本図幅域南東部に分布し，主として斜層理のある軽石質砂岩からなる．

模式地　宮城県利府町と大郷町との町境の番ケ森山一帯であって，本図幅域内では大郷町板谷南方付近でよく見られる．

分布及び層厚　利府町入菅谷付近から宮ノ前北西方をへて大郷町板谷南方にいたる一帯に分布している．層厚は30～120mである，入菅谷付近では30～50mで薄いが，ほかでは50～120mである．

岩相　安山岩の岩片及び多量の軽石を含む斜層理のある砂岩を主とする，層相の側方変化著しく，斜層理の形態変化及び安山岩・軽石などの含有率の差によって地域ごとの層序関係はやや異なっている．

砂岩は安山岩の微粒子や角閃石・紫蘇輝石・普通輝石・石英などの粒子によって構成される．安山岩微粒子及び有彩色物の含有量が多く，後述する青麻層に比べて，より黒色を帯びる特徴がある．

斜層理はくさび型ないしトラフ型のものと，平面型のものが多く，大郷町山居南方麓記録地付近では，厚さ2～3mのくさび型斜層理を示す粗粒砂岩の上に，平面型斜層理の卓越した厚さ0.5mの細粒砂岩が重なり，更に上位にそれらの繰り返しが見られる．このように平面型斜層理としたものは，一見平行ラミナ状ではあるが，厚さ3～5cm単位の平行ラミナを示す細粒砂岩とくさび型及びトラフ型斜層理を示す中粒～細粒砂岩の互層からなる．

層序関係の比較的安定した吉田川支流上流域一帯の本層中下部では，物質の供給量の変化も少なく，厚さ2～3mのくさび型ないしトラフ型斜層理を示す粗粒砂岩と，厚さ0.5mの平面型斜層理を示す細粒砂岩が1セットとなって累重している．しかし，平面型斜層理部が，上位のユニット下部の粗粒部によって削減され，直接斜層理の著しい斜層理粗粒砂岩によって覆われることもある．この場合の粗粒相ではトラフ型の斜層理となり，基底部に安山岩の岩片を密集させることが多い．
層位関係 下位の入菅谷層と非整合（disconformity）の関係にある。すなわち、入菅谷北東の町道切断では、入菅谷層最上部の凝灰質砂岩の上に浸食面を隔てて本層基底部の斜層理のある砂岩が重なるが、その東方の沢沿いにおいても入菅谷層の層序上の欠如は見られない。また、この境界を隔てて、下の入菅谷層と番ヶ森山層との構造差が認められない。

化石 石井ほか（1982）によれば、本層中から Chlamys miyatokoensis（NOMURA and HATAI）などの貝化石を産する。

IV.5 青麻層

青麻層（命名：中村, 1941, MS）

本層名は HANZAWA et al.（1953）によって踏襲されてきたが、上下の七北田層下部の斜層理のある砂岩と、本層を特徴づける斜層理を示す砂岩との岩相上の区別は極めて困難であった。更に増田（1957）によって指摘された七北田層の基底部の礫岩は、本図幅地域西部では消滅し、上下の地層を区分するのに適用できないことが分かった。したがって、岩相層序単位としては、これまでの七北田層下部と青麻層を一括して青麻層と再定義することにした。

本層は大堤層及び番ヶ森山層を被覆して、本図幅地域南東部（一部南西部）に広く分布している。主として斜層理のある細粒～中粒砂岩からなる。

模式地 宮城県仙台市青麻神社付近一帯であって、本図幅地域内では青麻神社北東方の入菅谷に至る道路一帯でよく見られる。

分布及び層厚 富谷町富谷南方から大和町吉田川南方支流沼田川及び小西川付近をへて大郷町山崎川流域に至る広い地区に分布している。ほかに大和町宮床川上流の泉市堂所付近一帯にわきに分布している。層厚は50-220mである。本図幅地域南東部では150-220mであるが、南西部の堂所付近一帯では50-150mで薄い。

岩相 青麻層は斜層理を示す細粒～中粒砂岩を主とし、岩質により上述の岩相を主とする主部と、斜層理を示さない凝灰質砂岩及び軽石凝灰岩からなる長尾砂岩部層とに分けられる。長尾砂岩部層は本層上部に挟まれている。

1) 主部

主部は石英粒に富む青灰色細粒～中粒砂岩を主とし、細粒凝灰岩・軽石凝灰岩及び礫岩を挟んでいる。一般に斜層理は顕著に発達する。斜層理は番ヶ森山層と同様で平面型のものが多いが、富谷町養田付近の主部上部でトラフ型のものが集中して見られる。主部の主体をなす細粒～中粒砂岩は、一般に上部ほど淘汰が良く、より細粒になる傾向がある。しかし、一部地区の主部の最上部では、利府層に由来したと考えられる石英小礫を含む厚さ数30mの淘汰の悪い中粒～粗粒砂岩が見られる。

地質図に示したように、礫層となる凝灰岩が数層挟まれている。利府町入菅谷西方及び大郷町山居南方には、比較的側方に追跡出来る礫層K 5 とした安山岩の礫及び黒曜石を含む含頁岩石礫岩が挟まれ、この礫岩から下層とした。大和町山田付近の基底部から数10mの層準に礫層K 6 とした厚さ数10cmの灰白色細粒凝灰岩が挟まれている。このK 6 は付近40m付近の層準に当たる大和町山田西方小鶴沢農場
付近に厚さ9mの灰白色―青灰色細粒凝灰岩を挟んでいて、よく追跡出来る。これを鍵層K7として地質図上に示した。K6及びK7は富谷町沼田南方及び利府町入菅谷北方において一部乱堆積を示す。富谷町一帯の広い範囲に分布する主部上部の層準に、厚さ数mの含貝化石青灰色塊状の軽石凝灰岩と、その直上の安山岩・花崗岩及び凝灰質シルト岩の円礫を含む中礫岩が一対となって挟まっている。これを鍵層K8として地質図上に示した。この鍵層は富谷町向大童付近から南隣仙台図幅地域まで広域に追跡出来る。

青麻層主部と番ヶ森山層とは、どちらも軟弱な砂岩からなり、斜層理の発達が良い点がよく似ている。しかしながら、本層主部が細粒―中粒砂岩からなるのに対し、番ヶ森山層は中粒―粗粒砂岩を主体と
している。また本層主部が比較的淘汰の良い石英粒を主としているのに対して、番ヶ森山層は淘汰が悪く、安山岩の岩片を主とし、軽石を多く含み、黒味を帯びているなどの相違点がある。

2) 長尾砂岩部層
長尾砂岩部層（命名：滝口，1975，MS）の模式地は宮城県松山町長尾付近（東隣松島図幅地域内）であって、層厚は0-20mである。発泡の良い軽石を含む白色塊状の軽石凝灰岩と、これが再堆積したと考えられる黄白色無層理の凝灰質砂岩からなる。斜層理を示さない。大郷町山崎付近では基底部に厚さ3-5cmの円礫を含む中礫岩を挟み、一部で貝化石が密集している。

層位関係 従来の大堤層及び番ヶ森山層を整合に被覆している。

化石 本層中から有孔虫化石及び海生貝化石を産する（第6表及び第7表）。浜田（1981，MS）によれば、本層の鍵層K8より20m下位の層準から Globorotalia acostaensis を産し、本種はBLOW (1969)のZone N.16の基底から出現する種である。また、三浦（1972，MS）は鍵層K8より3m下位の層準から Globorotalia lenguaensis, G. tumida plesiotumida 及び G. conomiozea を出し、尾田太良（未発表）は同一層準の同一地点からこれらのほかに Globoquadrina dehiscens を検出していている。これらの群集は、BLOW（1969）のN.17のうちでも上部に相当する可能性が強い。

IV.6 七北田層

七北田層（命名：中村，19419MS）

七北田層は大堤層及び青麻層を被覆して、本図幅地域南部西部・中部及び中南部に広く分布していて、主として細粒―粗粒砂岩からなる。

模式地 本図幅地域内宮城県泉市七北田付近一帯である。

分布及び層厚 富谷町富谷周辺一帯と、泉市根白石付近から東方の七北田付近に至る一帯とに分布している。層厚は90-150mである。

岩相 石英及び黒雲母を多量に有する細粒―粗粒砂岩を主とし、シルト岩・細粒凝灰岩・礫岩などを挟んでいる。岩質により、暗灰色凝灰質砂岩とシルト岩の互層を主とし、細粒凝灰岩・礫岩などを挟む下部と、無層理凝灰質細粒砂岩を主とし、20-30cmの大きな軽石や生痕を多量に有する上部とに分けられる。

本層中には数枚の鍵層が見られる。鍵層K10とした厚さ1.5mと0.8mの2枚の暗灰色凝灰質シルト岩は、基底から約5mの層準に挟まれ富谷町内でよく追跡出来る。地質図上に示した厚さ3-15cmの淡桃灰色細粒凝灰岩からなる鍵層K14は七北田層及び大松沢層中に挟まれ、両層がほぼ同時期のものである証拠の1つとなっている。鍵層K14の凝灰岩は、ごましぼ状の厚さ1-30cmの灰色で石英質の砂岩と互層しながら、地質図上に示したように広域に追跡することが出来る。

層位関係 下位の青麻層と整合である。本図幅地域南西部では鍵層K8を境として下位を青麻層としたが、泉市長谷倉川沿い付近で鍵層K8が確認出来ず、すべて七北田層とした。ここでの下位の大堤層との関係は整合である。

化石 本層中から海生貝化石・有孔虫化石及び珪藻化石を産する。
IV. 7 大 津 沢 層

大松沢層（命名：滝口，1975，MS）

大松沢層は青麻層を被覆して、本図幅地域北東部に分布していて、主として細粒―中粒砂岩からなる。

模式地 本図幅地域内宮城県大郷町大松沢上町付近である。

分布及び層厚 大和町吉田川北方落合一帯付近・大郷町石原―上町一带などに分布している。層厚は50~100mである。

岩相 主として細粒―中粒砂岩からなり、凝灰質シルト岩及び細粒凝灰岩を挟んでいる。細粒―中粒砂岩は塊状で、黒雲母を多量に有し、凝灰質のものが多い。ときに斜層理を示す大和町吉田川北方落合一帯付近では、最下部に厚さ15~40mの青灰色無層理のシルト岩があり、その上位に厚さ数mの青灰色凝灰岩（鍵層K11）、更にその上位にシルト岩と砂岩を挟む3枚の灰白色軟質細粒凝灰岩（鍵層K12・K13・K15）が重なる。なお更にその上位に生痕を多量に有する灰色無層理シルト岩を主とする岩相が重なっている。七北田層の項で述べたように細粒凝灰岩からなる鍵層K14が広域に追跡出来る。本層と七北田層とは酷似しているが、大松沢層の方が凝灰質であり、塊状の凝灰岩が多い。また、七北田層の下半部は斜層理が顕著である。

層位関係 下位の青麻層と整合である。七北田層と大松沢層とが同時異相であることは地質図でわかるように鍵層K14が両層にわたり広く追跡出来る。

化石 本層中から珪藻化石を産する（第8表）。

IV. 8 白 沢 層

白沢層（命名：岩井，1949）

白沢層は七北田層を被覆して、本図幅地域南西部に分布し、主として酸性軽石凝灰岩及びシルト岩からなる（第9図）。

模式地 宮城県宮城町白沢付近一帯である。本図幅地域内では泉市七北田川沿いで良く見られる。

分布及び層厚 泉市根白石・福岡及び朴沢一帯に分布している。層厚は150~200mである。

岩相 白沢層は酸性軽石凝灰岩・シルト岩などからなるが、岩質により酸性軽石凝灰岩を主とする主部と、蒜但木凝灰岩部層・白坂峠シルト岩部層及び板颪峠シルト岩部層とに分けられる。蒜但木凝灰岩部層は本層の最下部を、白坂峠シルト岩部層は本層の下部を、板颪峠シルト岩部層は本層の上部を構成し、主部とこれら部層とは整合関係を示す。

1）主部

主部は酸性軽石凝灰岩を主とし、薄いシルト岩をレンズ状に挟んでいる。酸性軽石凝灰岩は灰白色、塊状、軟弱、ガラス質のものが多い。本凝灰岩はシルト岩及び細粒砂岩からなる碎屑岩脈が多数貫いてている。

2）蒜但木凝灰岩部層
<table>
<thead>
<tr>
<th>産地</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actinocyclus ellipticus</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. ingens</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. cf. ingens</td>
<td></td>
</tr>
<tr>
<td>A. undulatus</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aduliscus spp.</td>
<td></td>
</tr>
<tr>
<td>Cocconeis spp.</td>
<td></td>
</tr>
<tr>
<td>Coscinodiscus endoi</td>
<td></td>
</tr>
<tr>
<td>C. marginaturn</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. cf. obscurus</td>
<td></td>
</tr>
<tr>
<td>C. symbolophorus</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. temperi</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. yabei</td>
<td></td>
</tr>
<tr>
<td>Cussia paleacea</td>
<td></td>
</tr>
<tr>
<td>Denticulopsis hustedtii</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. "tauta"</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. nicobarica</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. praedimorpha</td>
<td></td>
</tr>
<tr>
<td>Diploneis spp.</td>
<td></td>
</tr>
<tr>
<td>Goniothecium tenue</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grammatophora angulosa</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G. spp.</td>
<td></td>
</tr>
<tr>
<td>Hemiaulus polymorphus</td>
<td></td>
</tr>
<tr>
<td>Hemidiscus spp.</td>
<td></td>
</tr>
<tr>
<td>Mediaria splendida</td>
<td></td>
</tr>
<tr>
<td>Melosira sulcata</td>
<td></td>
</tr>
<tr>
<td>Navicula spp.</td>
<td></td>
</tr>
<tr>
<td>Nitzschia fossilis</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opephora spp.</td>
<td></td>
</tr>
<tr>
<td>Plagiogramma staurophorum</td>
<td></td>
</tr>
<tr>
<td>Raphoneis surirella</td>
<td></td>
</tr>
<tr>
<td>Rhabdonema cf. crassam</td>
<td></td>
</tr>
<tr>
<td>Raphoneis amphiceros</td>
<td></td>
</tr>
<tr>
<td>Rhizosolenia barboi</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R. miocenica</td>
<td></td>
</tr>
<tr>
<td>Rouxia californica</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stephanopyxis turriss</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thalassiosira antiqua</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T. nidulusi</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thalassionema nitzschiodes</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. 大松沢層大松沢上町と中間学校付近
2-8. 松山町次横南方約0.5-1.5km（北部から南に産地番号をつけてある）
9 及び 10. 松山町入町南方約1.0km付近
第9図 泉市柏坊付近の白沢層の露頭

第9表 白沢層の植物化石（信谷，1965，MS）

<table>
<thead>
<tr>
<th>産源</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acer protodiabolicum ENDO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Acer subpictum SAPORTA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Alnus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betula onbaraensis TANAI and ONOE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Betula sp.</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carpinus subyedoensis KONNO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Castanea sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dryopteris sp.</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fagus palaeocrenata OKUTSU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Fagus cf. palaeocrenata OKUTSU</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Fagus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Fraxinus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Magnolia sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Metasequoia sp.</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Paliurus cf. protonipponicus SUZUKI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Paliurus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Quercus (Cyclobalanopsis) cf. praegilva KRYSHTOFOVICH</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Sequoia sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Sorbus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Tilia sp.</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wisteria sp.</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Zelkova serrata MAXINO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Zelkova ungeri (Btt.) KOVATS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
</tbody>
</table>

産源
1. 泉城町下倉方周界約0.4km付近（南西隣川崎図面地域内）
2. 泉市川崎北周界約0.7km清川沿い
3. 泉市長坂東方周界約0.3km付近
4. 泉市振東方周界0.4km七北田近との合流点付近（南隣仙台図面地域内）
5. 泉城町奥武士周界（南西隣川崎図面地域内）
1から4は、白沢層シルト岩部層
5は櫻田層シルト岩部層
蒜但木凝灰岩部層（命名：糟谷，1982（MS））の模式地は本図幅地域内福岡市敷地付近であって、層厚は0-50mである。塊状黄色軽石凝灰岩からなり、安山岩及びデイサイトの角礫を有する火砕流である。炭化木や七北田層の砂岩の岩塊を取り込んでいる。有色鉱物は斜方輝石が多い。南西隣川崎図幅地域の宮城町大倉ダム付近では、高温型の石英が目立つ。

3）白坂峠シルト岩部層
白坂峠シルト岩部層（命名：OKUTSU（1955）の白坂峠頁岩部層を改称）の模式地は宮城町と秋保町との境界の白坂峠付近であって、根白石付近での層厚は40m内外である。凝灰質シルト岩・軽石凝灰岩・細粒凝灰岩及び砂岩からなり、互層をなし、層理が明瞭である。細粒凝灰岩には火山豆石が含まれることが多い。根白石北方で斜層理を示す砂岩を挟んでいる。

4）板颪峠シルト岩部層
板颪峠シルト岩部層（命名：OKUTSU（1955）の板颪峠頁岩部層を改称）の模式地は宮城町白沢の広瀬川と大倉川との合流点付近であって、層厚は模式地で150m内外、本図幅地域で25-35mである。凝灰質シルト岩・砂質軽石凝灰岩及びシルト岩・凝灰質シルト岩・細粒凝灰岩の互層からなり、層理が明瞭である。本部層の上部に黒曜石を多量に含む厚さ8-15mの軽石凝灰岩が見られる。

層位関係　下位の七北田層を蒜但木凝灰岩部層及び主部がよろしくして重なっている。また、白坂峠シルト岩部層が七北田層を整合に被覆している。前者は火砕流であるので堆積間隙がなくても下位層を切り込むことができる。したがって、白沢層と七北田層との関係は、整合と考えられる。

化石　白坂峠シルト岩部層中から第9表に示したような植物化石を産する。これはOKUTSU（1955）が下部根白石植物群としたものに当たる。板颪峠シルト岩部層中からOKUTSU（1955）の上部根白石植物群に当たる植物化石（第9表）及び珪藻化石Aulacosira granulata（EHRENBERG）SIMONSENを産する。南西隣川崎図幅地域北東端部泉市奥武士付近からは昆虫の葉の化石を産する。なお、小林（1962）によれば、奥武士付近の本部層中から、Achnanthes lanceolata var. ellipticaCLEVE, Melosira granulata（EHR.）RALFS, Fragilaria construens（EHR.）GRUNOW, Opephora MartyiHERIBAUD, Epithemia sorexKUTZ. などの淡水生珪藻化石を産する。

IV. 9 龟岡層

亀岡層（命名：HANZAWA et al., 1953）
亀岡層は大松沢層及び白沢層を被覆して、本図幅地域北東部及び南西端部に分布し、主として礫岩・細粒一粗粒砂岩及びシルト岩からなる。

模式地　宮城県仙台市亀岡広瀬川沿岸一帯である。本図幅地域内では大杉村荒屋敷付近でよく見られる。

分布及び層厚　三本木町伊賀付近・大杉村奥田一大森一帯及び大杉町鶴田川治岸一帯に分布している。ほかに、泉市西田中西方にわずかに分布している。層厚は15-120mであって、本図幅地域南西端部ではごく薄く15-20mである。

岩相　礫岩・細粒一粗粒砂岩及びシルト岩を主とし、数枚の亜炭層及びときに細粒凝灰岩を挟んでいる。
礫岩は本層基底部を構成し、厚さ5-30mである。礫は大きさ2-30cmの円礫で、中新統に属する各種の火山岩・暗灰色泥岩・砂岩・シルト岩・軽石凝灰岩などが見られる。本層は下位から上位へ、斜層理の発達した礫岩、砂岩、薄い砂岩とシルト岩の互層をへて、亜炭を含むシルト岩の順序に規則的に重なり、小浸食の凹凸面をもって同様の順序で重なる地層を繰り返す堆積輪廻が見られる。大きく見て2つの堆積輪廻からなる（庄司，1958）。2-3mの無層理の軽石凝灰岩とピソライトを含む層理の明瞭な細粒凝灰岩が、下位の堆積輪廻の上部を占め、有効な鍵層である。

本図幅地域中北部の東北縦貫道工事現場奥田付近で最もよく累重関係が観察された。現在は被覆されて見ることが出来ないが、磯崎（1976，MS）によれば、下位から上位に次のような層序が記述されている（第10図）。

基底礫岩・砂岩（厚さ5m）：礫岩は安山岩の中礫を主とし、粗粒な砂質の基質からなる。上部に行くに従い細礫を主とする礫岩に漸移し、ついに細粒砂岩へと変わる。細礫を物じえた部分では、級化層理がよく見られる。

粗粒砂岩（厚さ0.6m）：中礫を散在的に有する。

灰白色凝灰質細粒砂岩（厚さ2m）：わずかに成層している。

無層理細粒凝灰質砂岩（厚さ2m）

中粒砂岩・凝灰質砂岩・シルト岩互層（厚さ6m）：凝灰質砂岩は黒雲母を含む。

亜炭層（厚さ0.1m）

灰白色軽石砂岩（厚さ3.5m）：細礫・亜炭片及び軽石を有し、石英を含む。軽石は上部でその量を減ずる。

細粒凝灰質砂岩（厚さ10m）：細礫を有し、石英を含む。

茶褐色泥岩・灰褐色シルト岩互層（厚さ12-13m）：厚さ0.1-0.2mの泥岩と厚さ0.2m以上のシルト岩の互層からなる。

青灰色シルト岩（厚さ2m）
礫岩・砂岩互層（厚さ12m）：礫岩は中礫を主とし、粗粒な砂質の基質からなる。上部に行くに従い、級化層理を示す細礫を散在する中粒—粗粒砂岩となる。斜層理が見られる。

細粒砂岩・シルト岩互層（厚さ5.5m）：亜炭・中粒砂岩（厚さ0.5m）：1-2cmの薄い亜炭層2層とその間を占める中粒砂岩からなる。

醒了層（厚さ0.4m）：上部の細粒の部分は、無層理である。

亜炭層（厚さ3m）：下部は細礫を有し、石英に富む粗粒砂岩からなる。上部に行くに従い、細粒砂岩へと漸移する。

亜炭層（厚さ1.5m）：亜炭質砂岩・凝灰質細粒砂岩・シルト岩（厚さ10m）：シルト岩は黄色系、無層理で、竜の口層のものと酷似する。

層位関係 下位の亀岡層及び白沢層を基底礫岩をもって不整合に被覆している。

化石 庄司（1954）によれば、本図幅地域北東部の朝日炭鉱及び石神井（しゃくじい）炭鉱の坑内で、Alnus sp., Fagus crenata Blume, Sequoia Japonica Endo 及び Trapa incisa Siebold and Zuccarini の植物化石を産する。

IV. 10 竜 の 口 層

竜の口層（命名：HANZAWA et al., 1953）

竜の口層は亀岡層を被覆して、本図幅地域中北部及び南西端部に分布し、主としてシルト岩及び細粒砂岩からなる。

模式地 宮城県仙台市青葉山竜の口沢付近である。本図幅地域内では大衡村駒場南東方付近でよく見られる。

分布及び層厚 三本木町伊賀付近から大衡村駒場坂下を経て同村奥田付近に至る地区に分布している。ほかに、泉市西田中西方にわずかに分布している。層厚は50-60mである。北隣古川図幅地域内三本木町北方の古川通斜層も下の竜の口層は、深井戸のデータによれば、120m以上と考えられる。本図幅地域南西端部ではごく薄く10m以下である。

岩相 主としてシルト岩及び細粒砂岩からなり、珪藻泥岩を挟んでいる。シルト岩は暗灰色—青灰色、塊状、軟弱で、風化面が特徴ある黄褐色を示し、乾燥すると菱形の細片に割れる。細粒砂岩は青灰色、軟弱、黑雲母を有し、本層の上部に多い。

層位関係 下位の亀岡層を整合に被覆する。

化石 海生貝化石及び珪藻化石を多産する。第10表に貝化石を、第11表に珪藻化石を層準別に示した。なお、その採集地点を第11図に示す。磯崎（1976, MS）によれば、本図幅地域中北部の大衡村大
<table>
<thead>
<tr>
<th>則の口層の院生貝化石 (黒崎, 1976, MS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GASTROPODA</td>
</tr>
<tr>
<td>Boreoezotrophon aff. elegantula Dall</td>
</tr>
<tr>
<td>PELECYPODA</td>
</tr>
<tr>
<td>Nuculana sp.</td>
</tr>
<tr>
<td>Portlandia sp.</td>
</tr>
<tr>
<td>Yoldia cf. similis Kuroda and Habe</td>
</tr>
<tr>
<td>Fortipecten takahashii (Yokoyama)</td>
</tr>
<tr>
<td>Joannisiella cumingi (Hanley)</td>
</tr>
<tr>
<td>Felaniella sp.</td>
</tr>
<tr>
<td>Taras cumingi (Hanley)</td>
</tr>
<tr>
<td>Clinocardium bulowi (Rolle)</td>
</tr>
<tr>
<td>C. cf. bulowi (Rolle)</td>
</tr>
<tr>
<td>C. cf. californiense (Deshayes)</td>
</tr>
<tr>
<td>C. sp.</td>
</tr>
<tr>
<td>Cardium gorohense (Nomura)</td>
</tr>
<tr>
<td>C. sp.</td>
</tr>
<tr>
<td>Serripes groenlandicus (Bruguière)</td>
</tr>
<tr>
<td>S. sp.</td>
</tr>
<tr>
<td>Pitar sendaica Nomura</td>
</tr>
<tr>
<td>Callista sp.</td>
</tr>
<tr>
<td>Sanguinolaria olivacea (Jay)</td>
</tr>
<tr>
<td>S. spadicea Gray</td>
</tr>
<tr>
<td>S. ? sp.</td>
</tr>
<tr>
<td>Mactra optiva (Yokoyama)</td>
</tr>
<tr>
<td>M. cf. optiva (Yokoyama)</td>
</tr>
<tr>
<td>M. praetexta (V. Martens)</td>
</tr>
<tr>
<td>M. secta (Conrad)</td>
</tr>
<tr>
<td>M. cf. secta (Conrad)</td>
</tr>
<tr>
<td>M. tokyoensis Makiyama</td>
</tr>
<tr>
<td>M. sp.</td>
</tr>
<tr>
<td>Panope japonica (A. Adams)</td>
</tr>
<tr>
<td>Mya japonica Jay</td>
</tr>
<tr>
<td>M. ? sp.</td>
</tr>
<tr>
<td>Thracia sp.</td>
</tr>
</tbody>
</table>

1. 宮城県志津観三木町付近の庭
2. 宮城県志津観三木町南町
3. 宮城県志津観三木町立小学校校庭
4. 宮城県志津観三木町立中学校庭
5. 宮城県志津観三木町三木大橋南方450m、国道をいおり
6. 宮城県志津観三木町豊町
7. 宮城県志津観三木町上浦町
8. 宮城県黒川県大橋村坂下
9. 宮城県黒川県大橋村大橋南方400m、東北総合道工事現場
<table>
<thead>
<tr>
<th>層率</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marine Planktonic Diatoms:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actinocyclus obtensis JOUSE</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biddulphia aurita (LYNG.) BOEB. et GOD.</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coscinodiscus marginatus EHR.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. nodulifer SCHMIDT</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. stellaris ROP.</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. temperi BRUN</td>
<td>14</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denticula kamtschatica ZABELINA</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>D. seminae SIMONSEN & KANAYA v. fossilis SCHRADER</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitzschia extincta KOZ. et SCHESCHUK</td>
<td>16</td>
<td>11</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>N. fossilis (FURN.) KANAYA</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N. marina GRUN.</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudopodosira elegans SCHESCHUK</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thalassionera nitzschioides GRUN.</td>
<td>28</td>
<td>15</td>
<td>24</td>
<td>14</td>
<td>19</td>
<td>24</td>
</tr>
<tr>
<td>Thalassiosira antiqua (GRUN.) CL.</td>
<td>8</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T. decipiens (GRUN.) JOERG.</td>
<td>4</td>
<td>3</td>
<td>13</td>
<td>2</td>
<td>6</td>
<td>24</td>
</tr>
<tr>
<td>T. eccentricus (EHR.) CL.</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T. kryophila (GRUN.) JOERG.</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T. lineata JOUSE</td>
<td>8</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T. nidulus (TEMP. et BRUN.) JOUSE</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T. pacifica JOUSE</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T. spp.</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trochosira spinosa KITTY</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marine Benthonic Diatoms:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actinocyclus ehrenbergi RALFS</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Actinopyxis undulatus (BAIL.) RALFS</td>
<td>20</td>
<td>19</td>
<td>32</td>
<td>5</td>
<td>26</td>
<td>11</td>
</tr>
<tr>
<td>Cocconeis costata GREG.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. scutellum EHR.</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cussia tatsuokuchiiensis (KOIZUMI) SCHRADER</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melosira sulcata (EHR.) KÜTZ.</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagiogramma tesseata (GREG.) HEIR.</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raphoneis amphiceros EHR.</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R. angustata PANT.</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R. margaritalimbata MERTZ.</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R. surirella (EHR.) GRUN.</td>
<td>12</td>
<td>1</td>
<td>2</td>
<td>19</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

1 大荷村奥田北西方約2.0km付近
2 大荷村荒城北東方約1.8km付近
3 大荷村大森西方約1.0km付近
4 大荷村旗本三本木町前蔵
5 三本木町壱方南方0.7km付近（北領小川頂端地域内）
6 三本木町三本木幼福園（北領小川頂端地域内）

- 28 -
森西方400m東北縦貫道工事現場の露頭より、かにの甲羅及び魚の脊椎骨を、同村坂下東北縦貫道露頭より鯨の脊椎骨・肋骨などの化石を産出した。

IV. 11 三 木 層

三本木層（命名：喜多河，1941, MS）

三本木層は竜の口層を被覆して、本図幅地域中北部に分布し、主として細粒一粗粒砂岩及びシルト岩からなる。

模式地 宮城県三本木町廻山南方一帯である。本図幅地域内では大衡村古井待付近でよく見られる。

分布及び層厚 三本木町伊賀付近から大衡村駒場へて同村古井待付近に至る地区に分布している。層厚は50-70mである。

岩相 細粒一粗粒砂岩及びシルト岩を主とし、細粒一軽石凝灰岩・礫岩及び2枚の亜炭層を挟んでいる。砂岩は暗灰色、軟弱で、しばしば斜層理を示す。シルト岩は暗灰色、軟弱であって、凝灰質のものが多い。本層は砂岩・シルト岩及び凝灰岩の堆積輪廻をなし、亜炭層を挟む。基底部に粗粒砂岩及び疊
岩を伴う。

本図幅地域中北部の東北縦貫道坂下以北の切割で累重関係が最もよく観察された。礫崎（1976, MS）によれば、下位から上位に次のような層序が記述されている。

粗粒—細粒砂岩（厚さ4〜5m）：下部は斜層理が顕著で中礫を含み、粗粒一中粒砂岩からなるが、上位に向かって細粒砂岩となる。

細粒砂岩（厚さ4m）：細礫を含み斜層理が発達する。

亜炭層（厚さ1.2〜1.5m）：この厚い亜炭層は軽石凝灰岩に覆われている。

凝灰質細粒砂岩・シルト岩（厚さ5〜6m）：石英に富み、上部では成層する。

凝灰質細粒砂岩・粗粒砂岩互層（厚さ6〜7m）：粗粒砂岩は石英に富む。

亜炭層（厚さ2.6m）：三本木層中で最も厚い亜炭層である。本層は軽石凝灰岩を間に挟んでいる。

凝灰質中粒—細粒砂岩・シルト岩互層（厚さ9m）：砂岩は石英を豊富に含んでいて、斜層理の発達が著しい。

凝灰質細粒砂岩・凝灰岩（厚さ17m）：10〜20cmの薄い亜炭を2〜3cmの間隔で挟んでいる。

層位関係 竜の口層上部の浸食面を、本層の基底礫岩が不整合関係をもって被覆している。

化石 庄司（1954）によれば、北陸古川図幅地域南端部の日東三本木炭鉱太平坑の第11輪廻層の上盤の砂質泥岩から、多数の Corbicula leana PRIME の化石が報告されている。また、植物化石の Acer sp., Fagus crenata BLUME, Stewartia monadelpha SIEBOLD and ZUCCARINI 及び Sequoia japonica ENDO が第6・7輪廻層の上部頁岩中から報告されている。

IV. 12 向 山 層

向山層（命名：柴田（1953）によって初めて使用され、笠原（1974, MS）によって詳しく内容の記載が行われた）

向山層は竜の口層を被覆して、本図幅地域南西端部にわずかに分布し、主として中粒—粗粒砂岩及び細粒—軽石凝灰岩からなる。

模式地 宮城県仙台市向山広瀬川沿い付近であって、本図幅地域内では泉市西田中西方のゴルフ場付近で見られる。

分布及び層厚 泉市西田中西方に分布していて、層厚は25〜40mである。

岩相 中粒—粗粒砂岩及び細粒—軽石凝灰岩を主とし、シルト岩及び亜炭を挟んでいる。下部は中粒—粗粒砂岩を主とし、上部は細粒—軽石凝灰岩を主と著する。どの岩石も軟弱である。

層位関係及び化石 三本木層とは同時異相であり、下位の竜の口層と平行不整合である。本層中から未だ化石が発見されていない。

IV. 13 宮 床 凝 灰 岩

宮床凝灰岩（命名：中村，1941, MS）
第12図 三本木町混内山付近の三本木層と宮床凝灰岩との関係を示す北方から見た大露頭
（北隣古川図幅地域南端部の国道沿い）

第13図 三本木町混内山付近の三本木層と宮床凝灰岩との関係を示す北西方から見た大露頭
（第12図と同じ露頭。三本木層面すべり断層に沿う重力滑動によって地塊化した宮床凝灰岩）

第14図 大和町宮床―荒井県道沿いの七北田層を削り込んで不整合に重なる宮床凝灰岩

宮床凝灰岩は大堤層・青麻層・七北田層・竜の口層及び三本木層を被覆して、本図幅地域西半部に広く分布している。主として酸性軽石凝灰岩からなる。

模式地 本図幅地域内宮城県大和町宮床川宮床付近である。

分布及び層厚 色麻町王城寺原演習場ー帯・大衡村大衡ー帯・大和町吉岡ー宮床ー帯などに広く分布している。層厚は30〜250mである。本図幅地域北端部では30〜70mであるが、大和町七ツ森及び笹倉山付近ー帯では150〜200m、局所的に250mにも達する。

岩相 酸性軽石凝灰岩を主とし、同質の火山礫凝灰岩・凝灰角礫岩・凝灰質シルト岩などを伴ってい
第15図 大和町長原一石倉間の宮床凝灰岩と七北田層との関係を示す露頭

第16図 大和町大堤北西方の宮床凝灰岩と大堤層との不整合関係を示す露頭

これらの火砕岩はデイサイトである。軽石を多量に有することが多く、軟弱、ルーズなものが多い。宮床凝灰岩中には、本凝灰岩の下位の各層の巨大な岩塊を取り込んでいる（第12図・第13図・第14図及び第15図）。北隣古川図幅地域南端部の三本木町側内山付近では、第12図及び第13図で分かるように、三本木層の上に、下位層から由来した巨大な岩塊を多数に有する宮床凝灰岩が被覆している。第13図の写真に、重力滑動により地塊化した状態の三本木層面すべり断層の宮床凝灰岩がよく写っている。大堤層を被覆する宮床凝灰岩中には、大堤層に属する岩塊を、青麻層及び七北田層と接する本凝灰岩中には、青麻層及び七北田層の巨大な岩塊を取り込んでいる。

層位関係及び化石 大堤層・青麻層・七北田層皮及び龍の口層を不整合に、三本木層を整合に被覆している（第12図・第14図・第15図及び第16図）。宮床凝灰岩中からは化石は発見されなかった。本凝灰岩
中には化石を含む岩塊が見られるが，すべて下位層から取り込まれたものである。

IV. 14 小 野 田 層

小野田層 (命名: 庄司, 1958)
小野田層は宮床凝灰岩を被覆して，本図幅地域北端部にわずかに分布し，主として軽石凝灰岩・シルト岩及び砂岩からなる。

模式地 宮城県小野田町鳴瀬川南岸小山一月崎間一帯であって，本図幅地域内では大衡村彦右衛門橋北方にわずかに見られるが，露出が悪い。

分布及び層厚 大衡村の上述の所にわずかに分布し，層厚は北隣古川図幅地域のデータから見て，50 -100mであると考えられる。

岩相 軽石凝灰岩・シルト岩及び砂岩を主とし，礫岩及び亜炭を挟んでいる。本層には大きく見て4 - 5 の堆積輪廻が認められ，各堆積輪廻層は下位より礫岩・砂岩・薄層理のシルト岩と砂岩の互層，亜炭を含むシルト岩及び微凝灰岩からなる。この中に数層のよく連続する軽石凝灰岩を挟んでいる。砂岩はときに斜層理を示す。

層位関係及び化石 本図幅地域内では本層の上半部が分布していて，下位の宮床凝灰岩な整合に被覆している。本層中から化石は発見されていない。

IV. 15 若 畑 層

若畑層 (命名: 柴田, 1962)
若畑層は宮床凝灰岩を被覆して，本図幅地域北西部に分布し，主としてシルト岩・細粒一中粒砂岩及び軽石凝灰岩からなる（第17図）。

模式地 宮城県大和町若畑付近である。

分布及び層厚 大和町若畑北方から若畑及び根古をへて担原に至る地区一帯に分布している。ほかに，王城寺原演習場に点々と分布している。層厚は150-200mである。

岩相 主としてシルト岩・細粒一中粒砂岩及び軽石凝灰岩からなり，ときに泥岩を挟んでいる。シルト岩は暗灰色一灰色，非常に軟弱，凝灰質，薄層理明瞭であって，細粒の凝灰質砂岩及び細粒の軽石凝灰岩と薄葉理互層をなす。ときにスランプ構造を示す。砂岩は細粒，非常に軟弱，凝灰質であってシルト岩に比し少ない。軽石凝灰岩は細粒，軟弱であって少ない。

層位関係 下位の宮床凝灰岩を整合に被覆している。

化石 SHIBATA (1962) は，担ノ原付近のシルト岩からの Ulmus cf. carpinooides Goeppert，Acer cf. diaboticum Blume 及び Ulmus sp. の植物化石を報告している。磯崎 (1976, MS) によれば，本層下部のシルト岩から淡水性珪藻を産する（第12表）。
第17図 大和町若畑北西方の若畑層の凝灰質シルト岩

第12表 若畑層の注入化石（磯崎, 1976, MS）

<table>
<thead>
<tr>
<th>Cocconeis placenta Ehr.</th>
<th>v. egypta (Egr.) Cl.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cymbella turgida (Greg.) Cl.</td>
<td></td>
</tr>
<tr>
<td>Gomphonema sp.</td>
<td></td>
</tr>
<tr>
<td>Melosira granulata (Ehr.) Ralfs</td>
<td></td>
</tr>
<tr>
<td>M. roeseana Râm.</td>
<td></td>
</tr>
<tr>
<td>Nitzschia sp.</td>
<td></td>
</tr>
<tr>
<td>Cepephora martyi Herib.</td>
<td></td>
</tr>
<tr>
<td>Stauroeis parvula Grun.</td>
<td></td>
</tr>
<tr>
<td>Stephanodiscus astreia (Ehr.) Grun.</td>
<td></td>
</tr>
</tbody>
</table>

産地：大和町若畑東方0.7km遺跡沿い

V. 第四系

V. 1 東原層

東原層（命名：磯崎1976, MS）

東原層は三本木層・宮床凝灰岩及び小野田層を被覆して、本図幅地域中北部にわずかに分布し、主として軽石凝灰岩及び礫岩からなる。

模式地 宮城県色麻町東原付近であって、本図幅地域内では大衡村彦右衛門橋下田畑付近で見られ、が露出が悪い。

分布及び層厚 大衡村の上述の所に分布し、層厚は20〜30mである。
岩相 主として軽石凝灰岩及び礫岩からなり、火山礫凝灰岩・砂岩・シルト岩などを挟んでいる。軽石凝灰岩は本層の上半部を構成し、酸性、灰白色、軟弱で、石英に富んでいる。礫岩は本層の下半部を構成し、径5-10cmの円礫を主とし、基質は粗粒な砂からなり、発結度が悪い。上位に向かって中礫岩から細礫岩へと変化し、基質は石英に富んだ細粒の砂となる。シルト岩は薄い砂岩を挟んで互層し、層理が明瞭である。砂岩はときに斜層理を示す。

層位関係及び化石 下位の三本木層・宮床凝灰岩及び小野田層を不整合に被覆している。本層中から化石は発見されていない。

V. 2 七ツ森火山岩

七ツ森火山岩（命名：阿部ほか、1976）

七ツ森火山岩は七北田層及び宮床凝灰岩を貫いて、本図幅地域西部に分布し、輝石ディサイト溶岩を
主とする。
模式地　本図幅地域内大和町七ツ森付近一帯である。
分布及び大きさ　北から南に向かって、達居森・七ツ森・笹倉山・長倉山・小屋森山などに分布し、溶岩円頂丘（一部部変）をなす。溶岩円頂丘の大きさは0.1-0.4 km²である。七ツ森は独立峰をなす7つの溶岩円頂丘から、笹倉山は数個の溶岩円頂丘から構成されている。第4図に示したように宮床凝灰岩を貫き、環状-半円状に配列している。
岩相　輝石デイサイト溶岩を主とし、安山岩溶岩を伴っている。暗灰色-灰色、斜長石及び多くの場合少量の輝石の斑晶を、ごくまれに小型の角閃石の斑晶を点在している。1つの溶岩円頂丘内では岩相変化が見られ、有色鉱物の量の増減が目立つ、ごく少ないが、斜長石の斑晶のみで輝石の斑晶を欠いていることがある。
代表的な岩石を鏡下で見ると、次のとおりである。阿部ほか（1976）による本火山岩の化学組成を第13表に示す。
石は大きさ0.2-1.5mm，ときに双晶をなし，紫蘇輝石は大きさ0.2-1.2mmである。両輝石とも比較的小型，少量である。角閃石は帯緑褐色，大きさ0.2-0.5mm，小型，ごく少量である。

石基：微晶質組織を示す。

斜長石斑状安山岩，大和町鎌倉山313m地点北々東方0.2km付近

斑晶：斜長石

斜長石は曹灰長石に属し，大きさ0.5-2.0mm，大型，準帯構造を示し，新鮮である。輝石の斑晶は欠く。

石基：斜長石・単斜輝石・鉱鉱・ガラス（少量）

間粒状組織を示し，新鮮である。

噴出時期　七ツ森火山岩のうち，模式地の七ツ森付近のものは，溶岩円頂丘の火山地形を明瞭に保存していて，第四紀になって噴出したと考えられる。しかしながら，宮床凝灰岩中の角礫と本岩とが酷似していることから，火山地形のやや不明瞭なもののも一部は，鮮新世後期に噴出した可能性がある。

V．3 赤崩山安山岩

赤崩山安山岩（命名：北村，1979）

赤崩山安山岩は，宮床凝灰岩及び若畑層を被覆して，本図幅地域北西部に分布し，（かんらん石含有）輝石安山岩溶岩及び同質火砕岩を主とする。

模式地　本図幅地域内の大和町赤崩山及び西方の峠道付近である。

分布及び厚さ　模式地付近及び大畑山山麓に分布している。厚さは150-250mである。

岩相　主として（かんらん石含有）輝石安山岩溶岩及び同質火砕岩からなり，凝灰質砂岩及びシルト岩を挟んでいる。溶岩は暗灰色，緻密，堅硬，斑状，斜長石及び輝石の斑晶を点在している。かんらん石斑晶は少量で，ときに欠くことがある。火砕岩は凝灰角礫岩・火山礫凝灰岩及び火山角礫岩からなり，大（ときに牛頭大）の暗灰色，斑状の火山岩塊及び火山礫を凝灰質物質が充填している。一般に角礫と基質との境は明瞭であり，両者の固結度が悪い。本岩の下半部は厚さ50-150mで火砕岩からなり，ごく薄い軟弱な凝灰質砂岩及びシルト岩を挟んでいる。上半部は溶岩がなる。

代表的岩石を鏡下で見ると，次のとおりである。

かんらん石含有紫蘇輝石普通輝石安山岩，溶岩，大和町赤崩山々頂南西方約0.4km付近

斑晶：斜長石・普通輝石・紫蘇輝石・かんらん石

斜長石は曹灰長石に属し，大きさ0.3-2.5mm，帯状構造及び虫食状構造を示し，新鮮である。普通輝石は大きさ0.2-2.5mm，ときに双晶をなし，新鮮である。紫蘇輝石は大きさ0.2-3.0mm，多色性を示し，新鮮である。かんらん石は大きさ0.2-1.0mm，小型，少量である。これら斑晶はしばしば集斑状をなす。

石基：斜長石・単斜輝石・斜方輝石・鉱鉱・ガラス（少量）

間粒状（一毛粒状）組織を示す，新鮮である。

第13表に本岩の化学組成を示す（NA・07）。

－ 37 －
紫蘇輝石普通輝石安山岩 屋久島, 大和町赤崩山々頂南西方約1.7km付近
斑晶: 斜長石・普通輝石・紫蘇輝石
斜長石は中性長石一曹灰長石に属し, 大きさ0.3-3.0mm, 累帯構造及び虫食状構造を示し, 新鮮である。普通輝石は大きさ0.2-1.5mm, まれに4.0mmに達する。ときに双晶をなし, 新鮮である。紫蘇輝石は大きさ0.2-1.7mm, 多色性を示し, 新鮮である。これら斑晶はしばしば集斑状をなす。
石基: 斜長石・斜方輝石・鉄鉱・ガラス
毛細状－ガラス基流晶質組織を示す。新鮮である。

噴出時期 宮床凝灰岩及び若畑層を不整合に被覆している。火山地形の保存が良く、岩石が新鮮であることから見て、更新世前期と考えられる。

V. 4 上嘉太神デイサイト

上嘉太神デイサイト（命名: 北村, 1979）
上嘉太神デイサイトは若畑層を貫き、赤崩山安山岩と同時期であって、本図幅地域北西部に分布し、酸化角閃石含有輝石デイサイト溶岩からなる。
模式地 本図幅地域内大和町上嘉太神北東方人工湖付近である。
分布及び岩体の大きさ 模式地付近及び大畑山一帯に分布して、数個の溶岩円頂丘から構成されている。岩体の大きさは、約0.1-2.0km²である。
岩相 酸化角閃石含有輝石デイサイトからなり、暗灰色一灰色、斜長石及び石英の斑晶が点在している。有色鉱物の斑晶は少量である。
代表的な岩石を鏡下で見ると、次のとおりである。

酸化角閃石普通輝石紫蘇輝石デイサイト, 大和町大畑山山頂東方沢沿い約1.9km付近
斑晶: 斜長石・紫蘇輝石・普通輝石・酸化角閃石・石英
斜長石は中性長石に属し、大きさ0.3-2.5mm、ときに4.0mmに達し、大型のものが多い、累帯構造及び虫食状構造を示し、新鮮である。紫蘇輝石は大きさ0.2-1.5mm、多色性を示し、少量、新鮮である。普通輝石は大きさ0.2-1.5mm、紫蘇輝石に比し少量、新鮮である。酸化角閃石は褐色一赤褐色、大きさ0.2-1.8mm、周縁部がオパサイト化していて少量である。石英は大きさ0.4-1.5mm、少量、融食形を示す。
石基: 微晶質組織

噴出時期 赤崩山安山岩は属する赤崩山を構成する溶岩との関係は不明であるが、赤崩山のものが溶岩地形をよくとっていることから見て、本デイサイトがやや古いと考えられる。

V. 5 荒川火砕岩

荒川火砕岩（命名: 三村, 1979）
荒川火砕岩は大堤層・七北田層・白沢層・宮床凝灰岩・若畑層及び赤崩山安山岩を被覆して、本図幅
地域西端部に分布している。輝石安山岩火砕岩及び火山泥流堆積物からなる。
模式地 本図幅地域から西隣関山峠図幅地域に至る宮城県色麻町荒川流域一帯である。
分布及び厚さ 色麻町荒川流域～王城寺原演習場一帯及び泉市根白石北西方一帯に分布している。輝
石安山岩火砕岩は厚さ50m以上である。火山泥流堆積物は厚さ30-120mである。
岩相 岩相は岩質により下位から輝石安山岩火砕岩及び火山泥流堆積物に分けられる。
輝石安山岩火砕岩は輝石安山岩凝灰角礫岩及び火山角礫岩を主とし、火山礫凝灰岩を伴っている。こ
れら火砕岩は、柱大（ときに牛頭大）の暗灰色、斑状の新鮮な火山岩及び火山礫を凝灰質物質が充填
している。一般に角礫と基質との境は明瞭であって、両者の膠結度がすこぶる悪い。代表的な火山岩塊
を鏡下で見ると次の通りである。
紫蘇輝石普通輝石安山岩、色麻町王城寺三角点 211.8m高地南西方付近（北隣古川図幅地域内）
斑晶：斜長石・普通輝石・紫蘇輝石
斜長石は中性長石—曹灰長石に属し、大きさ0.3-2.0mm。ときに2.5mm以上に達する。累帯構造及び虫
食状構造を示し、新鮮である。普通輝石は大きさ0.2-1.2mm。しばしば双晶をなし、新鮮である。紫
蘇輝石は大きさ0.2-1.5mm。多色性を示し、新鮮である。これら斑晶は、しばしば集斑状をなす。
石基：斜長石・単斜輝石・鉄鉱・ガラス
毛氈状（－ガラス基流晶質）組織を示す。
紫蘇輝石普通輝石安山岩、色麻町小栗山南々西方 2.7km尾根（北隣古川図幅地域内）
斑晶：斜長石・普通輝石・紫蘇輝石
斜長石は中性長石に属し、大きさ0.3-1.0mm。小型、少量であって、累帯構造及び虫食状構造を示す。
普通輝石及び紫蘇輝石は、大きさ0.2-0.6mm。小型、ごく少量である。
石基：斜長石・単斜輝石・鉄鉱・ガラス
ガラス基流晶質組織を示す。
火山泥流堆積物は主として輝石安山岩岩塊・砂及び火山灰からなる。大きさ200m以下の小型の多数
の泥流丘（流れ山）が見られる。代表的な輝石安山岩岩塊を鏡下で見ると次のとおりである。
紫蘇輝石普通輝石安山岩、泉市清川上流付近（本図幅地域西端部）
斑晶：斜長石・普通輝石・紫蘇輝石
斜長石は中性長石—曹灰長石に属し、大きさ0.3-2.0mm。累帯構造及び虫食状構造を示し、新鮮である。
普通輝石は大きさ0.2-2.0mm。しばしば双晶をなし、新鮮である。紫蘇輝石は大きさ0.2-1.8mm。多
色性を示し、新鮮である。これら斑晶は、しばしば集斑状をなす。
石基：斜長石・単斜輝石・斜方輝石・鉄鉱・ガラス
毛氈状－ガラス基流晶質組織を示す。
噴出時期 恐らく船形火山噴出物に属すると考えられる。火山泥流堆積物は後述の最高位段丘が形成
されたころに流下したものであろう。
吉岡図幅地域の段丘は、丘陵頂及び河谷壁と河谷底に分布し、それらの堆積物は風化残留物・崩壊堆積物・火山泥流堆積物・河成堆積物及び降下火山灰を含む。本図幅地域の大部分は高さ200m以下の丘陵で、河谷より密に開析されているが、頂高はよく揃い、遠望するときは広大な平坦面状を呈し、七ツ森などの孤立峰のみがこの平坦面上に突出している。この均一な高さの丘陵頂部には幅の狭い平坦面の認められる所が多く、本図幅地域の最高位段丘となっている。これを含めて、本図幅地域の段丘は5群に大別される。段丘堆積物はこのようにして最高位・高位・中位・低位及び最低位の段丘堆積物に区分される。

地形の項で述べたように、吉岡図幅地域の大部分は吉田川の流域であるが、南西部は七北田川の、北西部は花川の各流域に属している。河岸段丘群はこれら河谷に分布している。本図幅地域の中央部から東部にかけて、吉田川とその支流の沿岸に河岸平野がやや広がり、西部では河谷底の平坦面は河川の下刻によって段丘化し、河床に近い高さをもつ平坦面の幅は狭い。次に花川及び善川流域の段丘堆積物に分け記述する。

1）花川及び善川流域の段丘堆積物

花川と善川上流の間の最高位段丘の高さは130-200mの間に平坦面がよく残っている。平坦面を構成するものは火山泥流堆積物からなる荒川火砕岩で、安山岩塊は径数10cm以内の角礫・亜円礫で、風化殻をもつものが多い。基質は火山灰質及び粘土質である。平坦面のよく残っている部分での層厚は約20mである。最高位段丘上を後述の新期火山灰が覆っている。

高位・中位及び低位の各段丘は、花川及び善川上流沿岸を含めて、花川の造る複合扇状地の一部で、その扇頂は本図幅地域北端部で花川の河谷が急に広くなくなる部分にある。扇状地の主部は、北隣古川図幅地域の王城寺原にあり、王城寺（原）扇状地の名もある。ここで各段丘は丘陵地及び先に形成された扇状地を覆う形に順次形成されたもので、高位及び中位の両段丘は上流部で低位段丘相当の扇状地に覆われている。花川沿岸では最低位段丘と河岸平野も複合扇状地の構成員であるが、善川上流沿岸では最低位段丘までがこの扇状地に属し、最低位段丘と河岸平野はそれを善川が開析した谷沿いに分布している。

高位段丘は大沓掛及び中島付近で厚さ数mの堆積物を伴う。下部の2-3mは中一一大礫を主とする亜円礫層で、上半は砂混じりの粘土からなり、その上を新期の火山灰薄層が覆っている。善川沿岸の高位段丘は、東原層の砂礫及び凝灰岩を基盤とし、それらに由来する再堆積・風化の産物を伴い、その上位に新期の火山灰が断片的に認められる。

中位段丘は大衡一帯の尾西・下南沢・河原・座付・四反田及び五反田から吉田川北岸の吉岡まではほぼ連続的に分布する。中一一大礫層及びその上位の灰色粘土層からなり堆積物を伴い、新期の火山灰に覆われている。下南沢付近では火山灰層は薄く、断片的なことから認め難い。河原層層中に粘土質の薄層が含まれる。その部分の花粉分析結果は次のとおりである。

| Cryptomeria | 0.9% |
| Picea | 0.4 |

V. 6. 段丘堆積物
善川東岸の中位段丘は風化残留物を伴う所が多いが、柧木付近などで局所的に礫層となっている。

低位段丘は花川流域の復合扇状地の主面で、北隣吉田川流域で広範囲を占める。本図幅地域の花川南岸では厚さ5-8mの礫層を伴い、新期火山灰に覆われている。礫は安山岩の巨礫を含む円礫で、基質は最上部が粘土質であるほかは砂質である。下部に凝灰岩塊・炭質物などを含む所がある。それらは、恐らく、鮮新世の小野田層に由来するものと考えられる。善川流域の押し切川及び沓掛川沿岸では、礫は中―小円礫が多く、礫層の厚さは5m以内である。

花川流域の新期火山灰は王城寺火山灰及び肘折火山灰の2層からなる。低位・中位・高位及び最高位の各段丘は両火山灰層に覆われるが、最低位段丘は王城寺火山灰の上部と肘折火山灰に覆われる。両火山灰とも分布の中軸帯は北隣の吉田川流域にあり、王城寺火山灰は最大層厚約3m、肘折火山灰は0.3mであるが、本図幅地域内では薄く、それぞれ1m・数cm以下である。分布の南限は王城寺火山灰では大沓掛及び座府付近、肘折火山灰はその少し北方のようである。王城寺火山灰は黄褐色粘土質の軟質火山灰である。下部は砂状の粒子を含みやや固結し、中部は赤味を帯びててにひび割れを生じ、上部はやや細粒である。重鉱物組成は普通角閃石・紫蘇輝石・磁鉄鉱及び普通輝石であって、この順に多い（石田1965）。肘折火山灰は黄褐色細粒の軽石質火山灰で、粗粒ー中粒で砂状をなし、石英及び角閃石の細片を含む。山形県肘折火山に由来し、¹⁴C年代は10,700年前である（今田、1976）。なお、市川（1983）によれば、熱ルミネッセンス年代は、肘折火山灰が9,700年、王城寺火山灰より少し下位と考えられる吉田川流域の安沢火山灰下部が約5.7万年、上部が約4万年である。

最低位段丘は花川の上流沿岸に連続的に分布し、巨角礫から小円礫までの多様な礫層を伴う。

2）吉田川流域の段丘堆積物

吉田川流域には低位及び最低位の段丘が広く分布する。中位段丘は吉岡付近にやや広いほかは、相川付近及び三ケ内東方の本流北岸と、各支谷の上流部に断片的に分布するに過ぎない。高位段丘に相当するものは吉岡西方の丘陵末端頂部の斜面にわずかに風化残留物を伴うものがある。支谷最上流沿岸の中
位段丘堆積物は斜面の崩壊や風化堆積物と密接な関係をもつものが多く、不規則な形の岩片を多く含み、基質も粘土質や砂質と多様である。宮田川沿岸の宮田付近などでは円礫が多く、砂層を伴う所もある。

低位段丘は吉岡より上流の北岸一帯と、西川の合流点付近より下流の南岸で、吉田川の本流沿いにほぼ連続的に分布する。各支谷沿いには上流部で谷底平坦面の主部を占めている所が多い。堆積物は主として礫からなり、砂及び粘土を伴うが、層厚及び層相は局地的に変化に富む。最低位段丘は吉岡より上流の吉田川沿岸・一ノ関より上流の宮田川中流及び竹林川上流沿岸で谷底平坦面の主部となっているほか、西川中流（鶴田川）上流の各河谷・吉田川下流の南岸一帯などにやや広く分布する。これらも礫層及び砂礫層を伴い、地区ごとに層相及び層厚が多様である。

3） 七北田川流域の段丘堆積物

七北田川沿岸には段丘群がよく発達し、それぞれ堆積物を伴っている。根白石東方の桜ヶ崎付近、その東側の寺岡山には最高位段丘があり、寺岡山では厚さ5m余の円礫層で認められる。このほか支流付近などで礫の斜面に円礫などが散見され、恐らく、最高位段丘堆積物に相当する礫層に由来するものと考えられるが、その所在を確かめることができなかった。

高段位段丘は七北田川及び長谷倉川の沿岸に分布する。平場及び吹付の高段位段丘堆積物は厚さ約10mの礫層で、下部は中―大円礫、中部及び上部は径数mに達する巨礫を含む安山岩の角礫からなり、基質は火山灰質及び粘土質で火山泥流堆積物の見かけをもっている。平場の北方などで、平坦な段丘面に基盤の七北田層の凝灰質シルト岩が露出している所があり、礫層はかなり起伏のある地形を埋積しているものと考えられる。長谷倉川東岸の西小屋付近にも安山岩の大礫―巨礫を含む礫層及び砂礫層を伴う。基質は砂質で、砂の薄層を挟む所もある。低位段丘は七北田川河谷内で最も広い面をもち、ほぼ一様に厚さ数mの小―大円礫からなる堆積物を伴う。最低位段丘の堆積物も円礫を主とし、根白石では粘土層・泥炭層を伴う。

中位段丘は要害及び鳥居原にやや広く発達し、根白石東方から南隣仙台図幅地域にかけて連続的に分布する。この付近一帯では中礫を主とし、大礫―巨礫を含む円礫層を伴う。基質は砂質で、砂の薄層を挟む所もある。低段位段丘は七北田川河谷内で最も広い面をもち、ほぼ一様に厚さ数mの小―大円礫からなる堆積物を伴う。最低位段丘の堆積物も円礫を主とし、根白石では粘土層・泥炭層を挟んでいる。

V. 7 沖積層

吉岡図幅地域の沖積層は、吉田川及び同支流をはじめとする主な河川沿いに分布し、主として礫・砂及び泥からなり、泥炭を伴っている。吉田川の下流沿岸には平野がやや広く発達し、吉岡付近より下流の河道に沿って自然堤防が断続的に分布する。沖積層は谷の中央部で10-15mの厚さをもち、下底層は砂礫、中部は粘土及びシルトが多いため質の部分もある。上部は自然堤防で砂質、後背湿地部では粘土質で腐植物を含む（北村，1979）。

- 42 -
VI. 応用地質

吉岡図幅地域内の鮮新統に属する亀岡層及び三本木層中には、亜炭層を挟んでいる。かつて稼行され、三本木炭田と呼ばれた。

VI.1 三本木炭田

三本木炭田は、本図幅地域北東部一帯に位置し、比較的交通の便がよい。地質図に示したように多数の小規模な炭鉱2)として亜炭を稼行したが、昭和58年3月現在すべて休山中である。

亀岡層中の亜炭層は広域に追跡出来るが、炭層の発達状態が悪く、その厚さが変化することが多い。山丈0.25-1.0m、炭丈0.25-0.85mである。

三本木層中の亜炭層は北隣古川図幅地域内では比較的発達が良いが、本図幅地域内駒場付近から南に向かって次第に薄くなり、シルト岩などの挟みが多くなる。炭丈1.0mに達する所では小規模に稼行されたが、多くの所で炭丈0.6m以下である。亜炭の発熱量は、約4,500Calである。

文献

阿部智彦・青木謙一郎・舟山裕士（1976）仙台周縁地域の新第三紀火山岩類の化学組成について、岩　石鉱物鈍床学会誌、vol. 7, 1, p. 137-146。

地質調査所（1960）宮城炭田、日本鉱産誌、BV-a, p. 295-306。

藤田至則・小池 清（1953）宮城県鹽竈市付近の中新統、地質学雑誌、vol. 59, p. 420-423。

浜田康史（1981）宮城県黒川郡富谷町周辺の地質、東北大学理学部地質学古生物学教室卒業論文 (M S)。

長谷弘太郎（1967）宮城県沖積平野の地質学的研究、東北大学理学部地質学古生物学教室邦文報告、no. 64, p. 1-45。

市川 健（1972）宮城県黒川郡大和町宮開近辺の地質について、東北大学理学部地質学古生物学教室

2) 尾崎ほか（1947, MS）及び山口ほか（1947, MS）を参照して記入した。
聴講生論文（MS）。

市川浩一郎（1951） 宮城県利府近附の三畳紀層。地質調査所報告，特別号A，p. 23-25。

市川未太（1983） 熱ルミネッセンス年代。パネルディスカッション 座散乱木遺跡をめぐる自然科学的アプローチ，石器文化談話会，24 p。

石田 чем（1978） 仙台平野北部の鮮新統と第四系構造発達史と地形発達史の研究。東北大学理学部地質学古生物学教室博士論文（MS）。

石井淳一（1949） 仙台付近の新生代層序。地球科学，no. 1，p. 1-5。

笠原泰子（1974） 宮城県黑川郡大和町吉岡西方の地質。東北大学理学部地質学古生物学教室卒業論文（MS）。

岩井淳一（1949） 仙台付近の新生代層序。地球科学，no. 1，p. 1-5。

中川久夫（1956） 東北地方脊梁山脈周辺に発達する石英安山岩類の層位学的研究。地球科学，no. 28，p. 14-22。

———（1959） 東北地方における第三紀造山運動について—（奥羽脊梁山脈を中心として）—。東北大学理学部地質学古生物学教室邦文報告，no. 49，p. 1–98。

———（1979） 土地分類基本調査5万分の1「吉岡」 II. 表層地質。宮城県，p. 21–31。

———・大沢 榮・石田 чем・中川久夫（1981） 古川地域の地質。地域地質研究報告（5万分の1図幅），地質調査所，32 p。

今田 正・植田良夫（1980） 東北地方の第三紀火山岩のK-Ar年代。岩石鉱物鉱床学会誌特別号，no. 2，p. 343–346。

中川久夫（1963） 東北地方第四紀 Tephrochronology. 第四紀研究，vol. 3，p. 88–93。

———（1979） 土地分類基本調査5万分の1「吉岡」 I. 地形分類。宮城県，p. 14–20。

———（1981） 第四紀。北上川流域の地質。長谷地質調査事務所，p. 279–307。

中川久夫・小川貞子・鈴木養身（1960） 仙台付近の第四系および地形（1）。第四紀研究，vol. 1，p. 219–227。
中村万次郎（1941） 富谷地塊の地史の研究. 東北大学理学部地質学古生物学教室卒業論文 (MS).
小倉 勉（1921） 船形火山地質調査報文. 震災予防調査会報告, no. 93, 57 p.
尾崎金右衛門・小西泰次郎・金子文郎・久保昌夫・川野辰男・小野寺公児（1947） 亜炭調査報告三本木・松山地区準精査. 炭田調査会報告2-8, 地質調査所 (MS).
山口 定・金子文郎・河野 也・山崎定夫・小谷野長平・定美理三郎・福吉長雄（1937） 宮城県三本木炭田吉岡地区亜炭調査報告. 炭田調査会報告2-7, 地質調査所 (MS).
安井和夫（1962） 宮城県塩釜・松島及び富谷東方地区の地質. 東北大学理学部地質学古生物学教室卒業論文 (MS).

- 45 -
The mapped district is situated about 0 to 18 km north of Sendai City, northern Japan. Stratigraphic succession in this district is summarized in Table 1.

PRE-NEOGENE

Rifu Formation
The Rifu Formation unconformably overlain by the Neogene formations is made up mainly of dark grey hard shale with fine sandstone. This formation is Anisian to Ladinian in age.

NEOGENE

The Neogene rocks, 1,000 m to 1,300 m in total thickness, are divided stratigraphically into fifteen formations: Shiogama Pyroclastic Rock, Irisugaya Formation, Ōtsutsumi Formation, Bangamoriyama Formation, Aoso Formation, Nanakita Formation,
Omitsuzawa Formation, Shirasawa Formation, Kameoka Formation, Tatsunokuchi Formation, Sambongi Formation, Mukaiyama Formation, Miyatoko tuff, Onoda Formation and Wakahata Formation as shown in Table 1.

<table>
<thead>
<tr>
<th>Geologic Age</th>
<th>Stratigraphy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quaternary</td>
<td></td>
</tr>
<tr>
<td>Holocene</td>
<td>Alluvium</td>
</tr>
<tr>
<td></td>
<td>Terrace deposits</td>
</tr>
<tr>
<td>Pleistocene</td>
<td>Arakawa Pyroclastic Rock</td>
</tr>
<tr>
<td>Akakuzureyama Andesite</td>
<td>Kamikadajin Dacite, Nanatsumori Volcanic Rock, Higashihara Formation (20-30)</td>
</tr>
<tr>
<td></td>
<td>Wakahata Formation (150-200)</td>
</tr>
<tr>
<td></td>
<td>Miyatoko Tuff (30-250)</td>
</tr>
<tr>
<td>Pliocene</td>
<td>Mukaiyama Formation (25-40)</td>
</tr>
<tr>
<td></td>
<td>Tatsunokuchi Formation (50-60)</td>
</tr>
<tr>
<td></td>
<td>Kameoka Formation (5-120)</td>
</tr>
<tr>
<td>Neogene</td>
<td></td>
</tr>
<tr>
<td>Shirasawa Formation (150-200)</td>
<td></td>
</tr>
<tr>
<td>Nanakita Formation (30-150)</td>
<td>Omatsuzawa Formation (50-100)</td>
</tr>
<tr>
<td>Miocene</td>
<td>Aoso Formation (50-220)</td>
</tr>
<tr>
<td></td>
<td>Ötsutsumi Formation (320+)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Triassic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ōturu Formation (700+)</td>
</tr>
</tbody>
</table>

*() thickness in meter

Shiogama Pyroclastic Rock

The Shiogama Pyroclastic Rock, the lowermost unit of the Neogene in the mapped district, is distributed in the southeastern part of the district. This formation consists mainly of pyroxene andesite pyroclastic rocks and includes tuffaceous sandstone, and was dated as 22.3 million years old by K–Ar method.

Irisugaya Formation

The Irisugaya Formation is distributed in the southeastern part of the district. This formation is made up mainly of tuffaceous medium sandstone and tuffaceous siltstone.
with intercalated tuff, and yields molluscan and diatom fossils.

Ōtsutumi Formation

The Ōtsutumi Formation, the lowermost unit of the Neogene in the Southwestern part of the mapped district, consists mainly of pyroxene andesite pyroclastic rock, fine to coarse sandstone and conglomerate with acid tuff and siltstone. This formation yields molluscan and foraminifera fossils. The age of this formation is Middle Miocene based on planktonic foraminifera.

Bangamoriyama Formation

The Bangamoriyama Formation overlies the Irisugaya Formation with disconformity, and is distributed in the southeastern part of the district. This formation consists mainly of cross-bedded pumiceous sandstone, and rarely yields molluscan fossils.

Aoso Formation

The Aoso Formation conformably overlies the Ōtsutumi and Bangamoriyama Formations, and is distributed in the southeastern part of the district. This formation consists mainly of cross-bedded fine to middle sandstone, with tuff and conglomerate. This formation yields foraminiferal and molluscan fossils, and the planktonic foraminifera are of Upper Miocene age.

Nanakita Formation

The Nanakita Formation conformably overlies the Ōtsutumi and Aoso Formations, and is distributed in the southern half of the district. This formation consists mainly of fine to coarse sandstone, and is interbedded with siltstone, tuff and conglomerate. This formation yields foraminiferal, molluscan and diatom fossils.

Ōmatsuzawa Formation

The Ōmatsuzawa Formation conformably overlies the Aoso Formation, and is distributed in the northeastern part of the district. This formation is composed of fine to medium sandstones interbedded with siltstone and tuff.

Shirasawa Formation

The Shirasawa Formation conformably overlies the Nanakita Formation, and is distributed in the southwestern part of the district. This formation consists mainly of acid pumice tuff and siltstone, and is interbedded with sandstone. This formation yields plant remains and diatom fossil, and is dated to Upper Miocene age by K–Ar method and fission track method.

Kameoka Formation

The Kameoka Formation unconformably overlies the Ōmatsuzawa and Shirasawa Formations, and is distributed in the northeastern part of the district. This formation consists mainly of conglomerate, fine to coarse sandstone and siltstone with lignite and tuff, and yields plant fossil.

Tatsunokuchi Formation

The Tatsunokuchi Formation conformably overlies the Kameoka Formation, and is distributed in the northern part of the district. This formation is composed mainly of siltstone and fine sandstone which is interbedded with diatomaceous mudstone. This formation abundantly yields molluscan fossil and diatom fossil.

Sambongi Formation

The Sambongi Formation unconformably overlies the Tatsunokuchi Formation, and is distributed in the northern part of the district. This formation consists of fine to coarse sandstone and siltstone with tuff, conglomerate and lignite, and yields plant fossil.

Mukaiyama Formation

The Mukaiyama Formation unconformably overlies the Tatsunokuchi Formation, and is narrowly distributed in the southwestern part of the district. This formation is composed mainly of medium to coarse sandstone, fine tuff and pumice tuff with interbedded siltstone and lignite.

Miyatoko Tuff

The Miyatoko Tuff unconformably overlies the Ōtsutsumi, Aoso, Nanakita and Tatsunokuchi Formations and conformably overlies the Sambongi Formation. This tuff is widely distributed in the western half of the district. The Miyatoko Tuff consists mainly of acid pumice tuff, including lapilli tuff, tuff breccia and tuffaceous siltstone.

Onoda Formation

The Onoda Formation conformably overlies the Miyatoko Tuff, and is very narrowly distributed in the northern part of the district. This formation consists of pumice tuff, siltstone and sandstone, intercalated with conglomerate and lignite.

Wakahata Formation

The Wakahata Formation conformably overlies the Miyatoko Tuff, and is distributed in the northwestern part of the district. This formation consists mainly of siltstone, fine to medium sandstone and pumice tuff with mudstone, and yields plant remains and diatom fossils.

QUATERNARY

The Quaternary is divided stratigraphically into seven units: Higashihara Formation, Nanatsumori Volcanic Rock, Kamikadajin Dacites, Akakuzureyama Andesite, Arakawa Pyroclastic Rock, terrace deposits and alluvium as shown in Table 1.

Higashihara Formation

The Higashihara Formation unconformably overlies the Sambongi and Onoda Formations and the Miyatoko Tuff, and is narrowly distributed in the northern part of the district. This formation is composed of pumice tuff and conglomerate which is
interbedded with lapilli tuff, sandstone and siltstone.

Nanatsumori Volcanic Rock

The Nanatsumori Volcanic Rock is composed of lava domes extruded through the Nanakita Formation and the Miyatoko Tuff. The rock is mainly (hornblende-bearing) pyroxene dacite lava and andesite lava.

Akakuzureyama Andesite and Kamikadajin Dacite

The Akakuzureyama Andesite unconformably overlies the Miyatoko Tuff and Wakahata Formation, and is distributed in the northwestern part of the district. The andesite is mainly (olivine-bearing) pyroxene andesite lava and pyroclastic rocks. The Kamikadajin Dacite extruded contemporaneously with the Akakuzureyama Andesite is composed of oxyhornblende-bearing pyroxene dacite lava.

Arakawa Pyroclastic Rock

The Arakawa Pyroclastic Rock unconformably overlies the Ōtsutsumi, Nanakita, Shirasawa and Wakahata Formations, the Miyatoko Tuff and the Akakuzureyama Andesite, and is distributed in the western part of the district. This rock is composed of pyroxene andesite pyroclastic rock and volcanic mudflow deposits.

Terrace deposits and Alluvium

The Terrace deposits are widely distributed in the district, and consist mainly of gravel, sand and mud which are covered by younger volcanic ash. The alluvium is widely distributed in the district along the Yoshida river and other rivers, and is made of gravel, sand and mud with peat.
北村 信・大沢 慎・中川久夫（1983） 吉岡地域の地質、地域地質研究報告（5万分の1図幅）, 地質調査所, 50 p.

(in Japanese with English Abstract, 5 p.).