八甲田山地域の地質

宝田晋治・村岡洋文

平成16年

独立行政法人 産業技術総合研究所
地質調査総合センター
5万分の1地質図幅索引図
Index of the Geological Map of Japan 1:50,000

5-22
青森西部
Aomori-Seibu
NK-54-23-8
(未刊行, unpublished)

5-23
青森東部
Aomori-Tōbu
NK-54-23-4
(未刊行, unpublished)

5-24
七戸
Shichinohe
NK-54-17-16
(未刊行, unpublished)

5-29
黒石
Kuroishi
NK-54-24-5
(1990)

5-30
八甲田山
Hakkōda San
NK-54-24-1
(2004)

5-31
十和田
Towada
NK-54-18-13
(未刊行, unpublished)

5-37
碇ヶ関
Ikarigaseki
NK-54-24-6
(未刊行, unpublished)

5-38
十和田湖
Towada Ko
NK-54-24-2
(未刊行, unpublished)

5-39
田子
Takko
NK-54-18-14
(未刊行, unpublished)

小坂 Kosaka
1:75,000 (1931)
八甲田山地域の地質

宝田晋治 *・村岡洋文 **

地質調査総合センターは、その前身である地質調査所の1882年の創業以来、国土の地球科学的実態を解明するための調査研究を行い、さまざまな縮尺の地質図を作成・出版してきた。それらのうち、5万分の1地質図幅は独自の地質調査に基づく最も詳細な地質図であり、基本的な地質情報が網羅されている。1955年以降は1:75,000の縮尺を1:50,000に改め、現在に至っている。

「八甲田山」地域の調査研究は、平成4〜10年度に実施された。本図幅地域の地質調査及び地質図幅作成と研究報告の取りまとめに際しては、中新統板留層・温湯層・中新世貫入岩類、鮮新統尾開山凝灰岩・虹貝凝灰岩、更新統沖浦火山、地質構造、鉱床、地熱及び温泉を村岡が担当し、地形、鮮新統藤沢森溶岩・黒森溶岩、鮮新統貫入岩類、更新統奥入瀬川火砕岩・子ノ口湖成層・小国湖成層・南八甲田火山群・八甲田火砕流・北八甲田火山群、更新統〜完新統十和田火山、地すべり堆積物、段丘堆積物、沖積層、鉱床、自然災害を宝田が担当した。

本研究にあたり多くの方々のご協力を得た。同和工営㈱の藤原茂久、金龍之緒、今野宏秀の各氏には全国地熱資源総合調査（第2次）の過程で、いくつもの新しいフィールド情報を教えて下さり、その成果を本研究に反映させていただきましたので、お礼申し上げる。群馬大学の早川由紀夫氏には、十和田カルデラ周辺のいくつかの重要な露頭を紹介していただいた。弘前大学の佐々木実氏には、現地や学会等で八甲田火山全般について広く議論していただいた。北海道大学理工学研究科（現国際航業）の佐々木寿氏には、八甲田火山の地質調査にあたっては、さまざまな面で討論していただいた。弘前大学・神戸大学（現高輝度光科学センター）の野澤聡氏には、野外調査にしばしば同行していただくとともに、沖浦カルデラ噴出物について活発に議論していただいた。弘前大学（現日本基礎技術株式会社）の藤原大佑氏には、しばしば野外調査に同行していただくとともに、南八甲田火山噴出物について、議論していただいた。日本大学の荒牧重雄氏、安井真也氏には、1998年8月に八甲田・十和田火山の地質学生巡検を企画していただき、本地域の噴出物について、現地でさまざまな議論をしていただいた。

産総研博士研究員（元北海道大学理工学研究科）の工藤崇氏には、本地質図幅の作成にあたって数多くの建設的な助言をいただくとともに、特に南北八甲田火山及び十和田火山噴出物についての貴重なご意見をいただき、調査データの一部を提供していただいた。本研究に当たり、沖浦環状地形の研究を最初にお勧め下さり、黒石図幅地域の研究を御指導下さった長谷川裕氏に御礼申し上げる。短時間の内に、重力異常図を作成して下さった駒澤（現北海道大学理学部）の藤原大佑氏に御礼申し上げる。本地域の鉱床に関する文献をご教授下さった須藤定久氏に御礼申し上げる。水垣桂子氏には、八甲田火山堆積物のESR年代測定に際して、大変お世話になった。

本研究に使用した薄片は、産総研北海道地質調査連携研究体（元地質調査所北海道支所）の佐藤卓見氏及び渡辺真也氏の作成による。

（平成15年度稿）

Key words : aerial geology, geological map, 1:50,000, Hakkōda San, Miocene, Pliocene, Pleistocene, Holocene, Itadome Formation, Nunruyu Formation, Obiraikyama Tuff, Nijigai Tuff, Aoni Tuff, Okiura, Minami-Hakkōda, Kita-Hakkōda, pyroclastic flow, pyroclastic fall, lava flow, lava dome, pyroclastic rocks, Towada, caldera, volcanic gas, hot spring
目 次

第1章 地形
1.1 カルデラ地形
1.2 火砕流台地
1.3 河川浸食
1.4 火山体地形
1.5 火口地形
1.6 地すべり・崩壊・浸食地形

第2章 地質概説

第3章 新第三系中新統
3.1 研究史及び概要
3.2 板留層

第4章 新第三系鮮新統
4.1 研究史及び概要
4.2 尾関山凝灰岩
4.3 虹貝凝灰岩
4.4 藤沢森溶岩
4.5 黒森溶岩
4.6 鮮新世貫入岩類

第5章 第四系

第6章 南八甲田火山群及び八甲田火砕流
6.1 南八甲田第1ステージ溶岩・火砕岩
6.2 黒瀬川火砕流堆積物
6.3 大小両沢土石流堆積物
6.4 南八甲田第2ステージ溶岩・火砕岩
6.5 八甲田第1期火砕流堆積物
6.6 萩原川火砕堆積物
6.7 南八甲田第3ステージ溶岩・火砕岩
6.8 八甲田第2期火砕流堆積物
6.9 黄金平溶岩
6.10 鷲ヶ峯溶岩，鷲ヶ峯火砕堆積物
図・表目次

第 1.1 図 『八甲田山』 地域とその周辺の地形………………………………………………1
第 1.2 図 八甲田山図幅及び周辺の地質図幅の範囲と 5 つのカルデラの位置…-2
第 1.3 図 『八甲田山』 図幅地域及び周辺地域の鳥瞰図……………………………………3
第 1.4 図 十和田カルデラと十和田八戸火砕流堆積物の火砕流台地…………………………4
第 1.5 図 南八甲田火山群の火山体…………………………………………………………5
第 1.6 図 北八甲田火山群の火山体（その 1）………………………………………………-5
第 1.7 図 北八甲田火山群の火山体（その 2）………………………………………………6
第1章 地形

（宝田晋治）

「八甲田山」地域は、日本測地系では北緯40度30分～40度40分、東経140度45分～141度0分の地域に位置する（第1.1図）。この範囲は、平成14年4月から施行された改正測量法による世界測地系では、北緯40度30分9.8秒～40度40分10.8秒、東経140度44分47.4秒～140度59分44.4秒にある。この範囲は東西約21km、南北約19kmにわたる地域で、行政上は、大半が青森県（南津軽郡、青森市、十和田市、黒石市、上北郡）に属する。しかし、図幅南端にあたる十和田湖北岸の一部は秋田県（鹿角郡）に属する。

1.1 カルデラ地形

八甲田山図幅の範囲は、奥羽脊梁山脈の中軸部にあたっており、水系を東西両側に大きく分けている（第1.1図）。この周辺には、湯ノ沢カルデラ、碇ヶ関カルデラ、沖浦カルデラ、八甲田カルデラ、十和田カルデラの5つのカルデラから構成されるカルデラ群が存在する（第1.2図；村岡・高倉, 1988；村岡・長谷, 1990）。

沖浦カルデラは南北直径約17kmで、八甲田山図幅の西部と西隣の黒石図幅内にまたがって位置する。沖浦カルデラの環状地形は、長谷（1978）、石井・長谷（1978）が、Landsat画像を用いて初めて注目し、地質の面から

第1.1図 「八甲田山」地域とその周辺の地形

国土地理院数値地質図50mメッシュ（標高）を使用し、GISソフトウェア（TNTmips）で作成。中央の枠が「八甲田山」地域の範囲。この周辺には、十和田・八甲田・沖浦・碇ヶ関・湯ノ沢の5つのカルデラが存在する。図中の地図は日本測地系のもの。
もカルデラを示す可能性を指摘した。村岡・長谷（1980）は、その地形及び地質の特徴がバイアス型カルデラ（Smith and Bailey, 1968; 荒牧, 1969）に類似することを指摘した。そして、Muraoka and Hase (1981) は、その後の調査結果に基づき冲浦カルデラと命名した。本図幅内では、北西部の中原川と南西部の浅瀬石川沿って、沖浦カルデラの環状谷が発達している（村岡・長谷, 1990）。

八甲田カルデラは直径約10 km で、本図幅の北部と北隣の青森東部図幅内にまたがって位置する。南部・谷田（1961）は、本図幅北東部にある田代平がカルデラであることを示した。村岡ほか（1983）、村岡・高倉（1988）は、南八甲田火山群の大部分が八甲田火砕流よりも早く、先カルデラ喷出物であるとして、八甲田カルデラの地形的カルデラ縁の南縁の位置を、南八甲田火山群の逆岳と荒川の間を通り、猿倉温泉にいたる位置としていた。これに対して、工藤ほか（2004）は、（1）カルデラの内部に第三系の石倉岳や高田大岳南東麓の基盤岩の高まりが存在すること、（2）南東縁の黒森から続くカルデラリムの地形の延長が村岡・高倉（1988）のカルデラ縁に続かないこと、（3）初期に活動した北八甲田火山群の溶岩流がカルデラ外の北方・西方まで流下していることなどから、地形的カルデラ縁の位置を、より北側の北八甲田火山群大岳の直下付近であるとした。本報告では、基盤岩の分布、重力異常、溶岩流の分布、温泉の位置などから、八甲田カルデラの地形的カルデラ縁は、硫黄岳と石倉岳の間付近にあると考えている。そして、カルデラ縁は、南西山麓付近では酸ヶ湯温泉上を通る位置に存在し、南東山麓では、高田大岳の南麓、南東麓、東麓に環状に分布する第三系の地形的高まりを通り、田代平を囲む位置に存在すると考えられる。

十和田カルデラは直径約12 km で、本図幅南端部と南隣の十和田湖図幅内に位置する。本図幅南端部には、十和田カルデラの北壁があり、円弧状の地すべり崩壊地形が多数観察できる。この円弧状すべり崩壊地形は、カルデラ形成時にできたカルデラ縁で不安定な部分が、カルデラ内に滑り落ちてきた多数の地すべりによるカルデラ縁の後退によってできたと考えられる。こうしたカルデラ縁の円弧状地すべり地形は、十和田湖全域で観察できる。

碇ヶ関カルデラは東西直径約 12 km であり、西隣の黒石図幅と南西隣の碇ヶ関図幅内に位置する。湯ノ沢カルデラは東西直径約 15 km であり、碇ヶ関カルデラの北壁の一部を共有し、を大きく取り囲むような位置にある。八甲田山図幅内の地形は、主にこれら5つのカルデラと、そこから噴出した大規模火砕流堆積物とその先カルデラ・後カルデラ火山からの火山噴出物によって形成されている。

本図幅の中央部には、八甲田カルデラの先カルデラ火山である南八甲田火山群が存在する（第1.1図；第1.3図）、図幅の北東部には、八甲田カルデラの後カルデラ火山である北八甲田火山群が存在する（第1.1図；第1.3図）。

1.2 火砕流台地

南八甲田火山群と北八甲田火山群の周辺には、八甲田カルデラから噴出した八甲田第1期火砕流堆積物と八甲田第2期火砕流堆積物が広く分布しており、特に図幅東部、北東部、北西部、南部では、明瞭な火砕流台地を形成している（第1.1図；第1.3図）。八甲田第2期火砕流堆積物の火砕流台地の表面高度は、図幅東部では約700～650 m、図幅東部で約600～500 m、図幅南東部で約500 mと八甲田カルデラから離れるにつれて徐々に下がっている。これに対して、図幅北西部では表面高度は約750～650 m、図幅西部の大小川沢や青荷川上流部、黑石沢・川巻沢付近では約900～750 mと給源から離れるにつれて逆に火砕流台地の表面高度が上がっている。これは、八甲田カルデラから噴出した大規模火砕流の流動層厚がまだ十分に厚く（厚さ数100 m以上）、南八甲田火山群の横岳や南沢岳の西側を回り込んで、下岳西山麓付近にある比高数100 mの地形的な高まりを乗り越えることが可能であったことを示唆している。南八甲田火山群の高田大岳及び南沢岳の西側を図幅内に含むことから、図幅東部に分布する堆積物は、八甲田火砕流が南八甲田火山群の西側を囲むように流走して堆積した可能性が高い。

また、これらの八甲田火砕流堆積物がつくる火砕流台地
第1.3図 「八甲田山」図幅地域及び周辺地域の鳥瞰図
十和田カルデラ南方上空から見た状況。国土地理院数値地質図50 mメッシュ（標高）を使用し、カシミール3Dで作成。
地の上を、十和田カルデラ起源の十和田大不動火砕流堆積物、十和田八戸火砕流堆積物、十和田毛馬内火砕流堆積物が覆っている。これらのうち十和田八戸火砕流堆積物が本図幅全域に渡って広く分布している。図幅南西部では、十和田八戸火砕流堆積物は、善光寺平付近で上面高度標高750 mの火砕流台地を形成している。図幅南西部の大木平でも、上面高度標高550～500 mの火砕流台地を形成している。御鼻部山背の北、大幌内付近では標高800～700 mの、猿倉沢付近では標高650～550 mの火砕流台地を形成している。

1.3 河川 浸食

火砕流台地をいくつかの河川が削り込んでいる。黄瀬川は、南八甲田火山群の南斜面から流れ下り、次第に東進して、図幅東部の焼山やま山付近で奥おいらせ入瀬川と合流している（第1.3図）。図幅南東部では、十和田湖岸の子ねの口から流れ出した奥入瀬川が北上し、焼山付近で進路を変え東進している（第1.3図）。

1.4 火山体地形

本図幅北東部にある黒森（標高1,023 m）は、鮮新世の溶岩（黒森溶岩）でできており、八甲田カルデラ南東部のカルデラ縁に位置している。同様な鮮新世の火山体は、八甲田カルデラ東の七戸図幅内の八幡岳（標高1,022 m）付近にも見られる。

本図幅南西部では、沖浦カルデラの後カルデラ丘の一つである毛無山デイサイト溶岩ドーム（標高982 m）が見られる（第1.3図；第1.4図B）。西隣の黒石図幅内にも、雷山、田代山、ニツ森などのデイサイト溶岩ドームがある。これらのデイサイト溶岩ドームは沖浦カルデラの内側に沿って環状に分布する（村岡・長谷,1990）。この環状のデイサイト溶岩ドームの配列は、沖浦カルデラがパイラ型カルデラである可能性が高いことを示す（村岡・長谷,1990；村岡,1993）。

本図幅南西部の善光寺平には、藤沢森と呼ばれる安山岩溶岩でできた地形的な高まりがある（藤沢森溶岩）。

南八甲田火山群では、東西約20 km、南北約10 kmの範囲に、多くの成層火山体が分布している。西から、南沢岳（標高1,199 m）、下岳（標高1,342 m）、横岳（標高1,340 m）、猿倉岳（標高1,416 m）、駒ヶ岳（標高1,450 m）、赤倉岳（標高1,226 m）のピークが存在している（第1.3図；第1.5図）。南八甲田火山群の最高峰は駒ヶ
高田大岳（標高 1,552 m）、雛岳（標高 1,240 m）の火山体が存在する。鳴沢台地、赤倉岳、井戸岳、大岳、仙人岱、硫黄岳が南北列を形成し、仙人岱、小岳、高田大岳、雛岳がほぼ東西列を形成している（工藤ほか、2004：第 1.3 図；第 1.6 図；第 1.7 図）。硫黄岳の南にある石倉岳（標高 1,202 m）は、中新統板いたどめ留層のデイサイト溶岩で構成される。同様なデイサイト溶岩は、高田大岳の南‒南東山麓及び雛岳東方にある地形的な高まりの部分にも存在する。南八甲田火山群に較べ、比較的なだらかな地形を示す。

北八甲田火山群では、東西約 14 km、南北約 12 km の範囲に、11 の成層火山体が分布している。北から、前嶽（標高 1,252 m）、田茂萢岳（標高 1,324 m）、鳴沢台地（標高 1,290 m）、赤倉岳（標高 1,548 m）、井戸岳（標高 1,550 m）、大岳（標高 1,585 m）、仙人岱（標高 1,388 m）、小岳（標高 1,478 m）、硫黄岳（標高 1,360 m）、高田大岳（標高 1,552 m）、雛岳（標高 1,240 m）の火山体が存在する。鳴沢台地、赤倉岳、井戸岳、大岳、仙人岱、硫黄岳が南北列を形成し、仙人岱、小岳、高田大岳、雛岳がほぼ東西列を形成している（工藤ほか、2004：第 1.3 図；第 1.6 図；第 1.7 図）。硫黄岳の南にある石倉岳（標高 1,202 m）は、中新統板いたどめ留層のデイサイト溶岩で構成される。同様なデイサイト溶岩は、高田大岳の南‒南東山麓及び雛岳東方にある地形的な高まりの部分にも存在する。南八甲田火山群に較べ、北八甲田火山群と比較すると、溶岩流の表面には明瞭な溶岩末端崖や溶岩じわなどの地形はほとんど保存されていない。また、北八甲田火山群に較べて比較的なだらかな地形を示す。 sulfur
さ 50 m の円形火口が開いている。また、井戸岳の南斜面では、直径 150 m の火口が見られる。北八甲田火山群赤倉岳山頂の東 200 m 地点には直径 50 m の火口湖（赤倉沼）が存在する。大岳山頂には、直径 180 m、深さ 30 〜 40 m の円形火口が存在する。大岳の北東斜面では、直径 40 〜 50 m の小火口がいくつか見られる。山頂の南 150 m の地点でも、直径 20 m の小火口（鏡沼）が見られる。硫黄岳の山頂部には、直径 180 m、深さ 30 〜 40 m の円形火口が存在する。大岳の北東斜面で、直径 20 〜 30 m の小火口が見られる。大岳の西山麓にある酸ヶ湯温泉の南 450 m 地点では、直径約 100 m の地獄沼が存在する。

1.6 地すべり・崩壊・浸食地形

南八甲田火山群では、多数の地すべり、崩壊・浸食地形が見られる。大小川沢上流部の櫛ヶ峯と下岳の北斜面は、大きく浸食されている。下岳と南沢岳の間は、熱水変質が進んでおり、岩石がより浸食作用を受けやすくなっていると考えられる。横岳や南沢岳の北西斜面でも小規模な浸食・崩壊地形が見られる。横岳東部、駒ヶ峯北部、乗鞍岳西部でもいくつかの地すべり崩壊地形が見られ、その地形的下方に地すべり堆積物が存在する。地すべり堆積物の表面には、地すべり堆積物に特徴的なコンプレッションリッジ（大八木、1992）などの地形が見られることがある。横岳の地すべり堆積物の凹みには、直径 300 m の横沼ができており、乗鞍岳の地すべり堆積物の凹みには、直径 300 m の黄瀬沼ができている。

南八甲田火山群赤倉岳の東部では、比較的規模の大きい東方向に開いた山体崩壊地形が見られ、蔚岩屑なだれ堆積物が分布している。蔚岩屑なだれ堆積物の表面には、比高数 m 〜 50 m 程度の流れ山地形が発達している。流れ山の間には、直径約 500 m の赤沼や黄沼が存在し、堆積物の南端には直径約 200 〜 300 m の長沼や菅沼が存在する。

本図幅北隣の青森東部図幅内では、北八甲田火山群の赤倉岳北東部には、先カルデラ火山のある青撫山火山の断面が露出している（Hayakawa、1985）。青撫山火山が作る比較的なだらかな斜面が十和田カルデラ北東部に見られるが、この斜面はカルデラ壁にある円弧状地すべりによる急崖で断ち切られている（第 1.1 図、第 1.3 図）。

1.5 火口地形

北八甲田火山群の井戸岳の山頂には、直径 250 m、深さ 50 m の円形火口が開いている。また、井戸岳の南斜面では、直径 150 m の火口が見られる。北八甲田火山群赤倉岳山頂の東 200 m 地点には直径 50 m の火口湖（赤倉沼）が存在する。大岳山頂には、直径 180 m、深さ 30 〜 40 m の円形火口が存在する。大岳の北東斜面では、直径 40 〜 50 m の小火口がいくつか見られる。山頂の南 150 m の地点でも、直径 20 m の小火口（鏡沼）が見られる。硫黄岳の山頂部には、直径 180 m、深さ 30 〜 40 m の円形火口が存在する。大岳の北東斜面で、直径 20 〜 30 m の小火口が見られる。大岳の西山麓にある酸ヶ湯温泉の南 450 m 地点では、直径約 100 m の地獄沼が存在する。

1.6 地すべり・崩壊・浸食地形

南八甲田火山群では、多数の地すべり、崩壊・浸食地形が見られる。大小川沢上流部の櫛ヶ峯と下岳の北斜面は、大きく浸食されている。下岳と南沢岳の間は、熱水変質が進んでおり、岩石がより浸食作用を受けやすくなっていると考えられる。横岳や南沢岳の北西斜面でも小規模な浸食・崩壊地形が見られる。横岳東部、駒ヶ峯北部、乗鞍岳西部でもいくつかの地すべり崩壊地形が見られ、その地形的下方に地すべり堆積物が存在する。地すべき堆積物の表面には、地すべき堆積物に特徴的なコンプレッションリッジ（大八木、1992）などの地形が見られることがある。横岳の地すべき堆積物の凹みには、直径 300 m の横沼ができており、乗鞍岳の地すべき堆積物の凹みには、直径 300 m の黄瀬沼ができている。

南八甲田火山群赤倉岳の東部では、比較的規模の大きい東方向に開いた山体崩壊地形が見られ、蔚岩屑なだれ堆積物が分布している。蔚岩屑なだれ堆積物の表面には、比高数 m 〜 50 m 程度の流れ山地形が発達している。流れ山の間には、直径約 500 m の赤沼や黄沼が存在し、堆積物の南端には直径約 200 〜 300 m の長沼や菅沼が存在する。

本図幅北隣の青森東部図幅内では、北八甲田火山群の赤倉岳北東部には、先カルデラ火山のある青撫山火山の断面が露出している（Hayakawa、1985）。青撫山火山が作る比較的なだらかな斜面が十和田カルデラ北東部に見られるが、この斜面はカルデラ壁にある円弧状地すべりによる急崖で断ち切られている（第 1.1 図、第 1.3 図）。
第2章 地質概説

森國家よりなる。尾関山凝灰岩は約3.5 Maの流紋岩薄
石凝灰岩であり、西の黒石図幅地域及び南西の碇ヶ関
図幅地域に分布する直径約15 kmの湯ノ沢カルデラの
形成に伴って噴出した火砕流堆積物である。尾関山凝灰
岩は東北日本弧の第四紀火山岩に比べ、比較的アルカ
リに富む流紋岩である。また、その噴出量が比較的大き
く、坑井データによれば、本図幅地域の一部では、層厚
500 mに達する。尾関山凝灰岩は、本図幅地域では、ほ
ぼ全てが溶結凝灰岩として凝灰岩として観察される。こ
のことから、中新世と鮮新世の間の不整合に示される時間間隔の間
に、一度、本図幅地域の大部分が陸化したことが明らか
である。北見凝灰岩群は約2.5 Maの安山岩スコリア凝灰
岩であり、西の黒石図幅地域及び南西の碇ヶ関図幅地域
に分布する8 km（南北）×12 km（東西）の碇ヶ関カル
デラの形成に伴って噴出した火砕流堆積物である。北見
凝灰岩は本図幅地域では、ほぼ全てが溶結の凝灰岩とし
て観察される。これより、尾関山凝灰岩の時期には、大
部分が陸化した本図幅地域が、再び、海進によって海底
化したものと推定される。

本図幅地域内の第四系は大きく分けて、前期更新世の
沖浦カルデラ、中期更新世の八甲田カルデラ、後期更新
世の十和田カルデラの3つのカルデラ起源の火砕流堆積
物、及びこれらの先カルデラ・後カルデラ火山の噴出物
からなる（村岡・高倉,1988）。本図幅地域西側の沖浦
カルデラは、直径約15 kmの半円状のカルデラであり、
環状構造の明瞭な西側の大部分は、黒石図幅地域にあ
る。沖浦カルデラからは、1.7～1.1 Maに数度の青荷凝
灰岩の噴出があり、その後、後カルデラ火山として、0.9～0.7 Maの沖浦ディサイトが噴出した。青荷凝
灰岩は全て陸成の堆積物であり、ディサイト凝灰岩、
スコリア凝灰岩、石質凝灰岩及び土砂流堆積物からなる。
青荷凝灰岩はその分布の東限付近に、東

北脊梁を構成するカルデラ底層にアバットし、尖滅
している。つまり、沖浦カルデラ形成時、すぐ東側
脊梁が存在したことが明らかであり、沖浦カルデラ東側
の環状構造は、もともと存在しなかったと考えられる。

その後、火山活動が東に移動し、八甲田カルデラ
の先カルデラ火山である八甲田火山群が本図幅中央付
近に形成された（第2.2図）。約1.1～0.8 Maに、八
甲田第1ステージ溶岩・火砕岩が噴出した。また、約
1.0～0.8 Maに、八甲田火山群の一部で中規模火砕流
が発生し、南東部の黒瀬川央近くに安山岩質の黒瀬川火
砕流堆積物が堆積した。そして、約0.8～0.5 Maに、北
<table>
<thead>
<tr>
<th>地質時代</th>
<th>地質区分</th>
<th>主な岩相</th>
<th>(年代値併記)</th>
</tr>
</thead>
<tbody>
<tr>
<td>第新世</td>
<td>尾関山凝灰岩</td>
<td>流紋岩偏粒凝灰岩</td>
<td>2.3-5.57 Ma (R)</td>
</tr>
<tr>
<td>新期</td>
<td>虹兎凝灰岩</td>
<td>安山岩自凝</td>
<td>2.4 Ma (R)</td>
</tr>
<tr>
<td>新期</td>
<td>甲賀凝灰岩</td>
<td>安山岩溶岩</td>
<td>0.05-0.4 Ma (N)</td>
</tr>
</tbody>
</table>

古地磁気年スケールは Berggren et al. (1995) による。
西の大川沢治で、多量の大小川沢士石流堆積物が堆積した。同じ頃に南八甲田第2ステージ溶岩・火砕岩が噴出した。南八甲田火山群の成長途中で、0.7〜0.6 Maと0.4〜0.3 Maに、本図幅北東部で、2度の大規模火砕流（八甲田第1期火砕流、八甲田第2期火砕流）の発生があり、八甲田カルデラが形成された。2つの大規模火砕流の噴火前には、比較的規模の大きなプリニー式降下軽石噴火があった。また、2つの大規模火砕流の間に、小規模火砕流や多数の降下軽石などの噴火があった（華山火砕堆積物。約0.5〜0.3 Maには、南八甲田第3ステージ溶岩・火砕岩の噴出があった。そして、南八甲田火山群最終期の黄金平溶岩、駒ヶ峯溶岩・火砕岩が約0.3 Maに噴出した。約0.3〜0.1 Maには、華山溶岩など堆積物が南八甲田の赤倉岳東部で発生した。
本図幅北部では、0.4 ～ 0.1 Ma に、北八甲田火山群で、雛岳、高田大岳、田茂沢岳、前嶽、鳴沢台地、仙人岱、硫黄岳、小岳、井戸岳、赤倉岳、大岳の火山群が形成された。また、このころ本図幅南部で十和田先カルデラ期の火山活動があり、御鼻郡山溶岩や青樫山火砕物・溶岩が噴出した。本図幅南隣の十和田湖図幅内で約 55 ～ 13 ka に十和田奥瀬火砕流、十和田大不動火砕流、十和田八戸火砕流の 3 回の大規模〜中規模火砕流の噴出があり、十和田カルデラが形成された。5.4 ka には、十和田カルデラ内で大規模なプリニー式噴火があり、中級降下軽石が噴出した（早川、1983b）。少なくとも最近 6000 年間には、北八甲田火山群の大岳山頂でも、ブルカノ式噴火や水蒸気爆発などの 5 回の噴火イベントが起こった（工藤ほか、2003a）。西暦 915 年には、十和田カルデラで毛馬内火砕流の噴出があった。北八甲田火山群南西山麓にある地獄沼火口では、西暦 1300 ～ 1650 年ごろに合計 3 回の水蒸気爆発が起こった（工藤ほか、2000）。
第3章 新第三系中新統

３．1 研究史及び概要

八甲田山図幅地域の新第三系中新統の研究は、その露出の制約から比較的限定されており、これまでの研究のほとんどが、より広範な地域の一部で行われたものである。北村ほか（1972）は青森県20万分の1地質図編纂の一環として、青森県下全域の新第三系の基本層序を確立した。金属鉱業事業団（1976）の広域調査報告書「八甲田地域」は、この地層の詳細な調査を行ったものである。北村ほか（1972）の層序を基に、この地域を初めて5万分の1という大縮尺で調査した。ただし、この調査範囲は本報告の八甲田山図幅地域南西側を含んでいない。新エネルギー総合開発機構（1987）は、全国地熱資源総合調査（第2次）の一環として、この地域を5万分の1という大縮尺で調査した。ただし、この調査範囲は本報告の八甲田山図幅地域南西側を含まないのである。村岡・長谷（1990）の黒石地域の研究によれば、本層下部層は硬質頁岩、安山岩溶岩及び安山岩スコピア凝灰岩からなる。下部層は地域によっては正規堆積物のみが卓越し、層相変化が見られるため、村岡・長谷（1990）は単にこれを板留層下部層と命名した。上部層は主にディサイト質の軽石凝灰岩からなり、頁岩・シルト岩やディサイト溶岩を挟む。上部層の軽石凝灰岩は広い範囲に厚層として分布し、村岡・長谷（1990）はこれを梨木沢凝灰岩部層と命名した。村岡・長谷（1990）の定義内容に準じる。

３．2 板留層

命名 板留層は今泉（1949）によって命名されたもので、村岡・長谷（1990）における再定義内容は岩井（1965）の板留層と大和沢層とを合わせたもので、小高ほか（1970）の板留層と早瀬森層を合わせたもので、金属鉱業事業団（1976）及び新エネルギー総合開発機構（1987）の四沢層に相当する。本地域のみからの全容の把握は困難であるが、村岡・長谷（1990）の黒石地域の研究によれば、本層下部層は硬質頁岩、安山岩溶岩及び安山岩スコピア凝灰岩からなる。下部層は地域によっては正規堆積物のみが卓越し、層相変化が見られるため、村岡・長谷（1990）は単にこれを板留層下部層と命名した。上部層は主にディサイト質の軽石凝灰岩からなり、頁岩・シルト岩やディサイト溶岩を挟む。上部層の軽石凝灰岩は広い範囲に厚層として分布し、村岡・長谷（1990）はこれを梨木沢凝灰岩部層と命名した。本報告でも、村岡・長谷（1990）の定義内容に準じる。

３．２．１ 板留層下部層（Fa）
模式地 黒石市板留南縁から沖浦に至る黒石図幅地域内の浅瀬川渓谷内（ただし、現在では浅瀬川ダムの建設に伴って人工的に被覆されている部分が多い）。層序関係 板留層下部層の下限は本報告地域の地表では知られていない。黒石図幅地域では、折り沢層というディサイト溶岩やディサイト凝灰岩に卓越する中新統を整合的に覆うことが判明している（村岡・長谷、1990）。分布・層厚 最も広い露出は、城ヶ倉渓谷上流、大小川沢上流や十和田カルデラの北側カルデラ壁に見られる。白瀬川渓谷にも、断片的に露出している。これらの露出はいずれも森実山の西端部に位置しており、この付近の標高が高い理由は、火山体の存在によるだけでなく、火山基盤岩層が構造的に隆起していることを示している。その例外は、荒川沿いの露出である。しかし、この露出位置も、幅が小さいもので、別の斜面（下瀬川下流）に一致している。本図幅地域内では板留層下部層の下限が見られないが、最も厚い露出の見られる城ヶ倉渓谷上流で、最大厚層250m程度である。ただし、坑井データ等から見ると、層厚は500m程度に及ぶものと推定される（地質断面図参照）。
岩相 本図幅地域の板留層下部層は、ほとんどの部分が塊状の普通輝石安山岩溶岩及び同質のハイアロクラスター岩の割合が増大する。更に東部の本図幅地域に入ると、正規堆積物はほとんど見られず、これらの割合が更に増大しているように見える。

城ヶ倉渓谷上流や大小川沢上流や十和田カルデラの北側カルデラ壁など露出のよいところで観察すると、板留層下部層の岩相は①塊状溶岩、②その上下の『蜂の巣』状で1～8 cm大に角礫化し、その間隙をメノウ（玉髄）等が埋めている部分、③ハイアロクラスターに分けられる。第3.1図に南八甲田山火山群の南沢岳と下岳の間の大小川沢上流におけるハイアロクラスターの産状を示す。①が最も多量であり、次いで③が多い。②は最も少量であり、①と③の間で変化していることもあろう。この場合には、①の岩相が直接③の岩相に移り変わる。②の岩相の中間を埋めるメノウ（玉髄）は海底溶岩流の岩相変化に伴って生じているため、現在の熱水活動とは関係づけられない。おそらく、黒石図幅地域の模式地に匹敵する。

緑色変質は③が最も強く、①が最も弱い。しかし、これらの変質の程度は全体として、黒石図幅地域の浅瀬川沿いなどに比べて、格段に弱く、かなり新鮮な部分が多い。たとえば、黒石図幅地域の本層の溶岩中に普通に産し、浅海底の証拠とみなされた大型の杏仁状の孔隙は、見た目には見えない。このことから見ると、本図幅地域においては、溶岩流流動の海底深さが黒石図幅地域よりやや大きかった可能性も考えられる。十和田カルデラの北側カルデラ壁では、本層が新鮮なため、集状組織が露出で観察されるほどである。また、この点と、正規堆積物をほとんど欠くために、大小川沢上流などで同じ溶岩を主体とする下位の板留層下部層と上位の南八甲田第1期溶岩を区別することが容易でない。ここでの唯一の野的な判別基準は、陸域の溶岩流か海成の溶岩流かである。

3.2.2 梨木沢凝灰岩部層（Fs, Fd, Fp）
模式地 黒石市虹ノ湖西方の梨木沢沿い（黒石図幅地域内）。

層序関係 下位の板留層下部層を整合に覆う。

分布・層厚 本層部の主な分布は八甲田山地域北東の黒森の北、城ヶ倉渓谷上流、荒川沿い、黄瀬川上流、十和田カルデラの北側カルデラ壁、石倉岳を始めとする八甲田カルデラの縁辺部などである。本層部はその上限と下限とが見られる荒川付近では最大層厚150 m程度であるが、不整合のため、本来の上限が不明な十和田カルデラの北側カルデラ壁では、最大層厚250 m程度と見積もられる。このことから、本層部は少なくとも北に薄く、南に厚くなっているようである。しかし、坑井データから見ると、最大層厚は400 mに及ぶものと推定される（地質断面図参照）。ほぼ、黒石図幅地域の模式地における450 mという最大層厚に匹敵する。

岩相 本層部は硬質頁岩及び硬質シルト岩(Fs)、デイサイト溶岩(Fd)、デイサイト軽石凝灰岩(Fp)よりなる。本層部の主体は、いわゆる典型的なグリーンタフであり、全ての露出地域で、普遍的に緑色変質した海成のデイサイト軽石凝灰岩である。多くの地域で下位の板留層下部層との層間を区別するため、この層を下部層と本層部のどちらに入れるかは定義の問題であり、村岡・長谷（1990）はこれを梨木沢凝灰岩部層に含めた。本報告でもこれに準じることとする。この頁岩やシルト岩は、硬質かつ珪質で、厚板状の層理がしばしば発達している。デイサイト溶岩は本図幅地域の東側や黒石図幅地域では見られないが、本図幅地域の西側では、石倉岳を始めとする八甲田カルデラの縁辺部に広く出現する、層厚大デイサイト軽石凝灰岩を含む層準であるので、噴出源に近い地域では、デイサイトの溶岩相が分布するのかもしれない。しかし、デイサイト軽石凝灰岩はどちらといえば、南側で厚い
傾向があるため、八甲田カルデラの縁辺部が噴出源を示すかどうかについては明らかでない。

第3.2図は石倉岳の山頂付近のデイサイト溶岩の産状である。全体が珪化し、白色変質している。一部では角礫化したところもあり、海底での自破砕を表すであろう。しかし、変質のため、原岩についての詳細は不明である。このような広範な珪化・白色変質は、完新世の地熱変質とは思われず、本デイサイト溶岩は北八甲田山の溶岩類に被覆される前に硅華・白色変質を被っていたように見える。また、この露頭では、N61°E、60°SやN73°E、72°Sなどの割れ目が卓越し、せん断作用を受けているように見える。なお、鏡下では、斜長石、石英のほかに、少量の普通輝石や角閃石等の斑晶が認められることがあるが、苦鉄質鉱物は一般に緑泥石化や方解石化を被っている。

主体をなす上位の軽石凝灰岩についていえば、細粒ガラス片の割合が比較的少なく、径数mm～10cm大の多量の軽石からなる。軽石は発泡がよく、しばしば粘土化している。また、発泡のよい軽石が圧密によりレンズ状化していることも多い。より層厚の薄い北方の荒川沿いでは、通常の軽石凝灰岩として産するが、より層厚の厚い十和田カルデラの北側カルデラ壁では、比較的下位の層準に、堆積面にほぼ平行な長径5～20cm程度の硬質頁岩レンズを認め多数含んでいる。板留層下部層に由来するとと思われるハイアロクラスタイトの礫を含んでいることも多い。十和田カルデラの北側カルデラ壁では、これらが礫質凝灰岩といえるほど、多く含まれる部分も見られる。

同様のことは、新エネルギー総合開発機構（1983）が青荷川北岸で掘削したN57‒OU‒8井の深度1,000m付近で記載されており、その下位に頁岩が記載されている。そのため、この報告書はこの付近を青荷層に区分し、同層を膨大な厚さとしているもの、実際には沢凝灰岩部層の最下位付近を含んでいることがわかる。金屬鉱業事業団（通商産業省資源エネルギー庁）（1973）が砂子沢で掘削した47EAHK‒2井の坑底付近で比べる沢凝灰岩部層の基底付近の硬質頁岩レンズが示されている。そのため、その坑井は沢凝灰岩部層を掘り抜いているもので、その坑底がすでに沢凝灰岩部層の基底に近いことがわかる。デイサイト軽石凝灰岩も、一般に緑泥石化や方解石化が普遍的であり、斑晶として、斜長石、石英、少量の磁鉄鉱及びイルメナイトは認められるが、苦鉄質鉱物は不明である。基質も長孔状の軽石組織が残っているが、脱ガラス化が進んでいる上に、緑泥石、方解石、スメカタイトなどが生じている。

3. 3 温湯層（Nt, Np）

命名 本層は酒井（1961）が黒石図幅地域の温湯・白沢付近に分布する凝灰岩に対して命名したもので、岩井（1965）及び小高ほか（1970）もほぼこれを踏襲している。村岡・長谷（1990）は黒石図幅地域において、この温湯・白沢付近の温湯層の層序の位置を、より北東や南西の中新統に対しても整理した。すなわち、村岡・長谷（1990）の温湯層は、岩井（1965）の温湯層及び松木平シルト岩部層、小高（1970）の温湯層、松木平シルト岩部層、王余魚層及び大川原層を合わせたものに相当する。本報告では、この定義に従う。

模式地 黒石市温湯付近から白沢沿い（黒石図幅地域内）。

層序関係 下位の板留層梨木沢凝灰岩部層を整合に覆う。

分布・層厚 八甲田山図幅地域における本層の露出は、比較的断片的な中新統中でも、ことごとく散布されている。八甲田山図幅地域における本層の露先は、本図幅地域北西端の荒川の西斜面、中野川沿い、及び本地域東側の中里川周辺の3箇所で、合計5箇所のみである。

岩相 本層はデイサイト軽石凝灰岩（Np）と頁岩及び
びシルト岩（Ns）からなる。デイサイト軽石凝灰岩は本地域東側の湯尻川で，下位に厚さ10mのものの，上位に厚さ7mのものが2枚現れているのである。多少緑色変質を受けており，黒雲母は判然としないが，角閃石は見られる。このほかの露出地域においては軽石層及びシルト岩の単調な岩相からなる。ときに，数10cmの厚さの海底に堆積した降下軽石層を挟むが，これは地質図上では頁岩及びシルト岩に含めている。

地質時代 本図幅地域のすぐ北の荒川沿いの下湯温泉の西斜面には本層中に両輝石安山岩が貫入しているが，これを新エネルギー総合開発機構（1987）がK‒Ar年代測定した結果，7.16 ± 0.50 Maという値が得られた。村岡・長谷（1990）の浅瀬石川玄武岩類と同系統のものと思われる。

模式地 青森市荒川沿い。

分布・形態 荒川沿いに見られる。このほか，滝ノ股川，黃瀬川，二ノ沢，滝ノ沢，焼山，葛川，十和田カルデラの北側カルデラ壁などに，より小規模な露出が見られる。城ヶ倉渓谷のデイサイト貫入岩体は地表調査から見られるが，比較的露出が広いため，ラコリス状と岩株状の2つの可能性がある。しかし，地層調査井からN2‒HD‒8号井，N2‒HD‒6号井，N1‒HD‒3号井という3つの地熱調査井が掘削られている。岩相は，本貫入岩体は一般に緑色変質して，暗緑色を呈する。しかし，荒川沿いでは，貫入母岩の板留層下部層の安山岩と比べると，相対的に新鮮である。

層序関係 本図幅範囲内では，本貫入岩体は中新統の板留層梨木沢凝灰岩部層までを貫き，鮮新統の虹貝凝灰岩に覆われる。しかし，中新統と鮮新統の間の不整合を考慮すれば，論理的には尾関山凝灰岩にも覆われるはずである。

岩相 本貫入岩体は一般に緑色変質して，暗緑色を呈する。しかし，荒川沿いなどでは，貫入母岩の板留層下部層の安山岩と比べると，相対的に新鮮であることが多い。十和田カルデラの北側カルデラ壁などでは，板留層下部層の安山岩も比較的新鮮のため，大きな差異はみえない。また，本貫入岩体には，玉嵐状風化が特徴的に見られる。これは柱状節理に直交する方向の，ディスキングのような溶岩で発達した。

3. 4 中新世貫入岩類

本図幅地域には主に2系統の中新世貫入岩類が分布する。荒川ドラライトと城ヶ倉デイサイトである。

3. 4. 1 荒川ドラライト（Mb）

地層名 新称。時代的にも，岩相的にも，村岡・長谷（1990）の浅瀬石川玄武岩類と同系統のものと思われる。

模式地 青森市荒川沿い。

分布・形態 荒川沿い十和田カルデラの北側カルデラ壁に見られる。これらは，貫入母岩の地層面に平行的な岩床として産する。しかし，荒川沿いでは，梨木沢凝灰岩部層の頁岩の一部を切るなど，詳細に見ると，地層面に明瞭に斜交している部分が認められる。

層序関係 本図幅範囲内では，本貫入岩体は中新統の板留層梨木沢凝灰岩部層までを貫き，鮮新統の虹貝凝灰岩に覆われる。しかし，中新統と鮮新統の間の不整合を考慮すれば，論理的には尾関山凝灰岩にも覆われるはずである。

岩相 本貫入岩体は一般に緑色変質して，暗緑色を呈する。しかし，荒川沿いなどでは，貫入母岩の板留層下部層の安山岩と比べると，相対的に新鮮であることが多い。十和田カルデラの北側カルデラ壁などでは，板留層下部層の安山岩も比較的新鮮のため，大きな差異はみえない。また，本貫入岩体には，玉嵐状風化が特徴的に見られる。これは柱状節理に直交する方向の，ディスキングのような弱い節理系があり，その結果出来た六角
第3.5図 城ヶ倉渓谷における城ヶ倉デイサイトの垂直な柱状節理

貫入岩体については、貫入方向がほとんど北東-南西ないし北北東-南南西を示し、岩脈状であると判断される。たとえば、黄瀬川、二ノ沢、滝ノ沢及び戸川のものについては、それぞれの露出が断片的であるものの、ほぼ同一線上に配列している。第3.4図に黄瀬川の松見ノ滝付近における本デイサイトの産状を示す。これらは本来は連続していた比較的大規模なデイサイト岩脈が、中新世と鮮新世との間の陸化の時期に、その対浸食抵抗力のためモノナドック状に残り、これがより若い地層の堆積面より高く残ったために、現在も同一線上に点々と露出しているのである。

層序関係 本貫入岩類は中新統の温湯層までを貫き、鮮新統の尾間山凝灰岩に覆われる。黒石図幅地域で、荒川ドレライトと城ヶ倉デイサイトに相当する貫入岩類を比べると、前者は板留層梨木沢凝灰岩部層までしか貫いていないのに対して、後者は温湯層までを貫いている（村岡・長谷，1990）。よって、城ヶ倉デイサイトの方がやや若いということはほとんど間違いないであろう。これ明清、城ヶ倉デイサイトは本地域の中新統の中で、最も若い地質単元といえよう。

岩相 第3.5図のように、岩株状の岩体と推定される
城ヶ倉渓谷では、事な柱状節理がほぼ垂直方向に発達している。同じく岩株状の岩体と推定される滝ノ股川で
も、垂直方向で、上方に放射状に開いた事な柱状節理
が発達している（第3.3図）。他方、岩脈と推定される
松見ノ滝付近では、柱状節理が貫入面に直交する傾向が
あるため、柱状節理の方向がかなり低角度である（第
3.4図）。城ヶ倉渓谷のデイサイトには、基本的に斑晶
が少なく、斜長石、石英、鉄鉱の斑晶を除けば、基本的
にガラス質である。この部分が多くの場合、鵺の作用
を伴って白濁し、しばしば、軽微な粘土化変質や珪化変
質を伴っている。苦鉱質鉱物起源の部分もあるが、緑泥
石、緑レン石、方解石等に完全に交代されている。
第4章 新第三系鮮新統

4.1 研究史及び概要

八甲田山図幅地域の新第三系鮮新統の研究も、中新統に同様に、その露出の制約から比較的限定されており、これまでの研究のほとんどが、より広域的な研究の一部として行われたものである。中新統と同様に、北村ほか（1972）、金属鉱業事業団（1976）、新エネルギー総合開発機構（1987）などが代表的なものとして上げられる。村岡・高倉（1988）は鮮新世以降の5つのカルデラと地熱資源の分布を主題として、八甲田山地域を含む八甲田広域地熱地域の10万分の1地質図を作成した。この中で、それまで、ほぼ各地の中新統に含まれていた尾開山凝灰岩及び虹貝凝灰岩を鮮新統として整理し、これらがそれぞれ本地域南西の約3.5Maでバイアス型の湯ノ沢カルデラと、約2.5Maでクラクタ型の碇ヶ関カルデラに由来するものであることを明らかにした。また、中新統と鮮新統の間の不整合を明確にした。

村岡・長谷（1990）は本地域の西隣の黒石図幅地域で、5万分の1地質図幅を作成した。黒石図幅地域における新第三系鮮新統の露出は、八甲田山図幅地域に比べてより連続的である。このため、本報では本地域の断片的な露出部分を層序的に解釈する上で、主に村岡・長谷（1990）の基本層序を参照した。

八甲田山図幅地域における新第三系鮮新統の主な露出地域は、滝ノ股川上流域からその支流である萢ノ沢や滝ノ股沢などに至る範囲、浅瀬石川の支流である黒沢沿い、青荷川最上流、城ヶ倉渓谷、などに露出する。村岡・高倉（1988）は、模式地付近の尾開山凝灰岩が一般にごく白色で黒雲母を多く含むことで特徴づけられるため、暗灰色を呈し、黒雲母の目立たないこれらの地域の凝灰岩の大部分を虹貝凝灰岩としている。しかし、村岡・長谷（1990）は、新エネルギー総合開発機構（1983）の9坑の試掘調査のコアの再観察を含めた検討によって、カルデラ内青荷凝灰岩の下位に伏在する虹貝凝灰岩の層厚が100m以下であるのに対して、尾開山凝灰岩の層厚が110mから400mであることを記述している。このことから論理的には、カルデラ内青荷凝灰岩の尖滅する東方で、虹貝凝灰岩が尖滅したとは考えにくい。実際、その後の調査結果から、岩相の項に記述するように、これらの凝灰岩は尾開山凝灰岩とすべきであることが判明した。本報告ではこの点を修正した。

本図幅地域内での最大層厚は、滝ノ股川上流域で、約250mである。ただし、坑井データによれば、最大層厚500mに及ぶものと推定される。

岩相 滝ノ股川上流域の本凝灰岩は、硬質・コンパクトで強溶結し、暗灰緑色を呈する。ときどき、緻密な本質ガラスレンズを多量に含むところがあるが、大部分は結

4.2 尾開山凝灰岩（Yw）

命名 本層は村岡・長谷（1990）が命名したものである。これ以前に村岡・高倉（1988）がこの地層名を暫定的に使用しているが、その詳細な定義内容は村岡・長谷（1990）のみが与えている。本報では、村岡・長谷（1990）の定義内容に準じる。井上ほか（1960）は遠部層を命名し、上田・井上（1961）、井上・三橋（1962）、井上（1964）は遠部層の分布、岩相、層序の位置を総括的に論じた。この項までの遠部層は、本層の尾開山凝灰岩及び虹貝凝灰岩を含んでいた。その後、岩井（1965）や小高ほか（1969、1970）が、これをより詳細に区別した。本層の尾開山凝灰岩は、おおむね岩井（1965）の竹館層と小高ほか（1969）の大落前川層を合わせたものに相当する。しかし、竹館層と大落前川層とはそれぞれ異なった層準に位置づけられてきた。また、尾開山などに分布する強溶結の岩相は流纹岩溶岩として、更に別の地質単元に含められてきた。更に、これららの地質単元は、ほとんどの場合、中新統とされてきた。村岡・長谷（1990）はこれらの問題を整理して、本凝灰岩を、「陸成の溶結凝灰岩としても、海成の軽石凝灰岩としても産するが、軽石は粗粒の斜長石、両錐形石英、黒雲母を多く含み、サニディンや角閃石を伴うことがある流紋岩質の軽石流堆積物であり、黒石図幅地域及び碇ヶ関図幅地域の湯ノ沢カルデラに由来する鮮新世の大規模な軽石堆積物である」として定義した。

模式地 南津軽郡大鰐町尾開山周辺（黒石図幅地域内）。

層序関係 中新統を傾斜不整合に覆う。

分布・層厚 本凝灰岩は、滝ノ股川上流域からその支流である湯ノ沢や滝ノ股沢などに至る範囲、浅瀬石川の支流である黒沢沿い、青荷川最上流、城ヶ倉渓谷、などに露出する。村岡・高倉（1988）は、模式地付近の尾開山凝灰岩が一般にごく白色で黒雲母を多く含むことで特徴づけられるため、暗灰色を呈し、黒雲母の目立たないこれらの地域の凝灰岩の大部分を虹貝凝灰岩としていた。しかし、村岡・長谷（1990）は、新エネルギー総合開発機構（1983）の9坑の試掘調査のコアの再観察を含めた検討によって、カルデラ内青荷凝灰岩の下位に伏在する虹貝凝灰岩の層厚が100m以下であるのに対して、尾開山凝灰岩の層厚が110mから400mであることを記述している。このことから論理的には、カルデラ内青荷凝灰岩の尖滅する東方で、虹貝凝灰岩が尖滅したとしても、尾開山凝灰岩が尖滅することは考えにくい。実際、その後の調査結果から、岩相の項に記述するように、これらの凝灰岩は尾開山凝灰岩とすべきであることが判明した。本報告ではこの点を修正した。

本図幅地域内での最大層厚は、滝ノ股川上流域で、約250mである。ただし、坑井データによれば、最大層厚500mに及ぶものと推定される。

岩相 滝ノ股川上流域の本凝灰岩は、硬質・コンパクトで強溶結し、暗灰緑色を呈する。ときどき、緻密な本質ガラスレンズを多量に含むところがあるが、大部分は結
晶多の多いガラス質凝灰岩を、径2mm大の斜長石を多量に含み、次いで石英、角閃石などが多、本来は黒雲母も含まれていたと思われるが、軽微ながら、広範な緑色変質に伴う緑泥石化等により、目立たなくなっている。第4.1図に、田端沢最上流の尾開山凝灰岩の産状を示す。そこで、黒雲母は識別できない。これに加えて、軽微で局部的な熱水変質もかなりの地点で見られ、空洞を石英が部分的に充填した凝灰岩やメノウ岩が普通に見られる。晶洞は厚さ1〜2cm程度、長さ数10cm程度である。木戸沢の滝ノ股川最上流に見られる晶洞の一つの表面方向は、N50°E、65°NWである。南部の凝灰岩から尾開山凝灰岩に至るまで、基本的には凝灰岩である。岩相として、本凝灰岩は鉱物の主成分として石英、斜長石、黑雲母を含む。石英は多量で、斜長石は少なくな、黒雲母は少ない。

第4.1図 田端沢最上流の尾開山凝灰岩の産状
溶結したガラス質凝灰岩で、径2mm大の斜長石を多量に含み、次いで石英、角閃石などが多。本来は黒雲母も含まれていたと思われるが、軽微ながら、広範な緑色変質に伴う緑泥石化等により、目立たなくなっている。第4.1図に、田端沢最上流の尾開山凝灰岩の産状を示す。そこで、黒雲母は識別できない。これに加えて、軽微で局部的な熱水変質もかなりの地点で見られ、空洞を石英が部分的に充填した凝灰岩やメノウ岩が普通に見られる。晶洞は厚さ1〜2cm程度、長さ数10cm程度である。木戸沢の滝ノ股川最上流に見られる晶洞の一つの表面方向は、N50°E、65°NWである。南部の凝灰岩から尾開山凝灰岩に至るまで、基本的には凝灰岩である。岩相として、本凝灰岩は鉱物の主成分として石英、斜長石、黒雲母を含む。石英は多量で、斜長石は少なくな、黒雲母は少ない。

第4.1図 田端沢最上流の尾開山凝灰岩の産状
溶結したガラス質凝灰岩で、径2mm大の斜長石を多量に含み、次いで石英、角閃石などが多。本来は黒雲母も含まれていたと思われるが、軽微ながら、広範な緑色変質に伴う緑泥石化等により、目立たなくなっている。第4.1図に、田端沢最上流の尾開山凝灰岩の産状を示す。そこで、黒雲母は識別できない。これに加えて、軽微で局部的な熱水変質もかなりの地点で見られ、空洞を石英が部分的に充填した凝灰岩やメノウ岩が普通に見られる。晶洞は厚さ1〜2cm程度、長さ数10cm程度である。木戸沢の滝ノ股川最上流に見られる晶洞の一つの表面方向は、N50°E、65°NWである。南部の凝灰岩から尾開山凝灰岩に至るまで、基本的には凝灰岩である。岩相として、本凝灰岩は鉱物の主成分として石英、斜長石、黒雲母を含む。石英は多量で、斜長石は少なくな、黒雲母は少ない。

第4.1図 田端沢最上流の尾開山凝灰岩の産状
溶結したガラス質凝灰岩で、径2mm大の斜長石を多量に含み、次いで石英、角閃石などが多。本来は黒雲母も含まれていたと思われるが、軽微ながら、広範な緑色変質に伴う緑泥石化等により、目立たなくなっている。第4.1図に、田端沢最上流の尾開山凝灰岩の産状を示す。そこで、黒雲母は識別できない。これに加えて、軽微で局部的な熱水変質もかなりの地点で見られ、空洞を石英が部分的に充填した凝灰岩やメノウ岩が普通に見られる。晶洞は厚さ1〜2cm程度、長さ数10cm程度である。木戸沢の滝ノ股川最上流に見られる晶洞の一つの表面方向は、N50°E、65°NWである。南部の凝灰岩から尾開山凝灰岩に至るまで、基本的には凝灰岩である。岩相として、本凝灰岩は鉱物の主成分として石英、斜長石、黒雲母を含む。石英は多量で、斜長石は少くな、黒雲母は少ない。

第4.1図 田端沢最上流の尾開山凝灰岩の産状
溶結したガラス質凝灰岩で、径2mm大の斜長石を多量に含み、次いで石英、角閃石などが多。本来は黒雲母も含まれていたと思われるが、軽微ながら、広範な緑色変質に伴う緑泥石化等により、目立たくなりない。第4.1図に、田端沢最上流の尾開山凝灰岩の産状を示す。そこで、黒雲母は識別できない。これに加えて、軽微で局部的な熱水変質もかなりの地点で見られ、空洞を石英が部分的に充填した凝灰岩やメノウ岩が普通に見られる。晶洞は厚さ1〜2cm程度、長さ数10cm程度である。木戸沢の滝ノ股川最上流に見られる晶洞の一つの表面方向は、N50°E、65°NWである。南部の凝灰岩から尾開山凝灰岩に至るまで、基本的には凝灰岩である。岩相として、本凝灰岩は鉱物の主成分として石英、斜長石、黒雲母を含む。石英は多量で、斜長石は少なくな、黒雲母は少ない。

第4.1図 田端沢最上流の尾開山凝灰岩の産状
溶結したガラス質凝灰岩で、径2mm大の斜長石を多量に含み、次いで石英、角閃石などが多。本来は黒雲母も含まれていたと思われるが、軽微ながら、広範な緑色変質に伴う緑泥石化等により、目立たなくなっている。第4.1図に、田端沢最上流の尾開山凝灰岩の産状を示す。そこで、黒雲母は識別できない。これに加えて、軽微で局部的な熱水変質もかなりの地点で見られ、空洞を石英が部分的に充填した凝灰岩やメノウ岩が普通に見られる。晶洞は厚さ1〜2cm程度、長さ数10cm程度である。木戸沢の滝ノ股川最上流に見られる晶洞の一つの表面方向は、N50°E、65°NWである。南部の凝灰岩から尾開山凝灰岩に至るまで、基本的には凝灰岩である。岩相として、本凝灰岩は鉱物の主成分として石英、斜長石、黒雲母を含む。石英は多量で、斜長石は少なくな、黒雲母は少ない。
4.4 藤沢森溶岩（Fj）

命名 新称。村岡・高倉（1988）の御鼻部山溶岩の一部にあたる。

模式地 温川温泉の北東 700 m にある標高 625.6 m 小ピークの北西斜面（N42°31′5.2″、E140°47′37.6″；緯度経度は日本測地系にもとづく。以下同様）。

層序関係 浄川下流部で、尾開山凝灰岩を覆い、温川土石流堆積物に覆われる。また、模式地では八戸火砕流堆積物に直接覆われる。

分布・層厚 温川温泉北東部の標高 625.6 m 小ピーク及びその北西斜面、浄川下流部の左岸斜面、藤沢周辺、切明、温川沢付近に分布。層厚は 100 m 以上。

岩相 数枚以上のブロック〜アア溶岩流である。模式地では、層厚 6 m の溶岩流の断面が露出している。岩質は、かんらん石普通輝石紫蘇輝石玄武岩質安山岩及び安山岩溶岩である。5 mm 以下の斜長石、2 mm 以下の普通輝石、紫蘇輝石、かんらん石を含む。

地質時代 尾開山凝灰岩（3.5 Ma）を覆い、温川土石流堆積物（1.7 〜 1.1 Ma）に覆われることから、鮮新世の溶岩である可能性が高い。本図幅北東部の黒森溶岩と同時代の溶岩であると考えられる。また、黒石図幅内の鮮新世三ッ森安山岩と同時期の噴出物である可能性がある。三ッ森安山岩からは、1.44 ± 0.15 Ma 及び 1.5 ± 0.3 Ma（Muraoka, 1989 MS）、1.91 ± 0.17 Ma 及び 1.89 ± 0.16 Ma（八島, 1990）の K‒Ar 年代値が報告されている。

4.5 黒森溶岩（Kr）

命名 新称。村岡・高倉（1988）の南八甲田第 1 期溶岩の一部にあたる。彼らは、黒森及びその周辺の溶岩類を、八甲田カルデラの先カルデラ火山として一括していた。しかし、本報告では黒森溶岩の K‒Ar 年代値が 1.74 ± 0.23 Ma（新エネルギー総合開発機構, 1987）であり、沖浦カルデラ形成（約 1.6 〜 0.9 Ma; 村岡・長谷, 1990）以前に噴出した可能性がある。地質単元区分および分布が八甲田火山群噴出物とは異なることから、区別して扱った。

模式地 黒森南部、国道 394 号線沿い（N40°39′4.0″、E140°57′30.0″）。

層序関係 黒森南東部の林道沿い（N40°38′7.9″、E140°58′1.3″）では、層厚 2 m 以上の黒森溶岩の上に、厚さ 50 cm のラハール堆積物をはさんで、厚さ 17 cm の十和田中掫降下軽石層が露出している。また、黒森南山腹の林道の露頭観察から、八甲田第 2 期火砕流堆積物が黒森溶岩を覆うことがわかる。

分布・層厚 黒森（標高 1,022 m）の周辺に分布する。黒森の頂から北方、西方、南方に約 500 m の範囲と
東南東方向に約1.4 kmの範囲まで分布している。黒森は、北八甲田火山群の山体に比べれば、比較的浸食が進んでいる。また、黒森南部〜南東部の中里川、冷水沢、湯尻沢付近にも層厚数m以上の溶岩が露出している。黒森の北東約1.5 kmにある大中台牧場の国道沿い（N40°39′45.4″、E140°58′52.5″）でも、層厚6m以上の溶岩が露出している。この溶岩も分布域が近接していることと岩質が類似することから、黒森溶岩と同時代のものと考えられるため、黒森溶岩に一括して示した。黒森溶岩と同時代と考えられる溶岩類は、東隣の十和田図幅内の土筆森や、北隣の青森東部図幅内の十戸図幅内の八幡岳周辺にも分布する。黒森周辺の黒森溶岩の層厚は、その分布から100m以上であると考えられる。

岩相 模式地では、層厚5m以上の1枚のアー溶岩流が露出している。黒森南東の林道沿いでも、層厚5〜2mのアー溶岩流が露出している。黒森溶岩は、主にこうした層厚数5m程度の溶岩流の積み重なりでできている。溶岩の岩質は、かんらん石含有普通輝石紫蘇輝石玄武岩質安山岩及び安山岩である。

地質時代 1.74±0.23MaのK-Ar年代値が得られている（新エネルギー総合開発機構、1987）。黒石図幅内の三ッ森安山岩と同時期の活動である可能性が高い。

4.6 鮮新世貫入岩類

4.6.1 橇ヶ瀬沢安山岩
命名 村岡・高倉（1988）による。彼らは、本貫入岩を十和田火山の先カルデラ期の貫入岩であるとしていた。しかし、ここでは鮮新世の貫入岩として判断した。

模式地 黄瀬川沿いの林道（橇ヶ瀬沢出合付近）。

層序関係 模式地で、紅輝凝灰岩に貫入しており、八甲田第1期火砕流堆積物に覆われる。

分布・層厚 黄瀬川及び橇ヶ瀬沢付近で分布する。橇ヶ瀬沢安山岩柱はN60°W方向に伸長している。黄瀬川沿いでは約500mにわたって露出が見られる（第3.5図）。この露頭では、紅輝凝灰岩に橇ヶ瀬沢安山岩が貫入している。また、大幌内川取水口でも、N20°W方向に伸長した安山岩質貫入岩体が露出している。この貫入岩体は、紅輝凝灰岩中に貫入しており、その上位には、降下スコリア堆積物や黒雲母を含む降下軽石層などを挟んで、八甲田第1期火砕流堆積物が露出しているが、それらには貫入していない。

岩相 模式地では、この貫入岩体は全体としてN60°W方向に伸長しているが、多くの部分が角礫化している（第4.3図）。母岩の紅輝凝灰岩は水底火砕流堆積物である（第2.1図、4.3節）ため、含水状態の未固結の紅輝凝灰岩に貫入した安山岩が堆積物中の水と反応して角礫化した可能性が高い。変質が進んでおり、孔隙には方解石が堆積している。大幌内川取水口の貫入岩体はマッシブであり、貫入岩体の上部付近では変質が進んでいない。岩質は、石英普通輝石紫蘇輝石安山岩である。

地質時代 紅輝凝灰岩（2.5Ma）に貫入し、八甲田第1期火砕流堆積物（0.7〜0.6Ma）とその下位の堆積物に覆われることから、後期鮮新世〜前期更新世の貫入岩である可能性が高い。ここでは、変質が進んでおり、八甲田火山群や十和田火山の溶岩と明らかに岩質が異なることから、鮮新世の貫入岩としておく。
第5章 第四系

5.1 研究史及び概要

5.1.1 研究史

第四系の研究史を、大きく沖浦カルデラ、八甲田火砕流堆積物、八甲田火山群、十和田火山の4つに区分してまとめる。

a. 沖浦カルデラ

沖浦カルデラ起源の青荷凝灰岩（村岡・高倉, 1988; 村岡・長谷, 1990）は、今泉（1949）が青荷層と命名したことによく、今泉（1949）は、青荷層の主要層が泥岩であると指摘した。今泉（1949）は、青荷層が泥岩より、むしろ軽石凝灰岩に卓越することを指摘した。岩井（1965）及び酒井（1966）は、青荷層上部層が、デイサイト質の軽石凝灰岩でできていることを記載した。一方、井上・原田（1965）や小高ほか（1970）は、西隣の黒石図幅内にある浅瀬石川付近を境に、東に青荷層、西側に板留層が分布することから、長谷（1978）, 石井・長谷（1978）, 村岡・長谷（1980）は、Landsat画像中に見られる青荷層堆積盆の環状地形に注目し、この地形がカルデラに由来する可能性と、青荷層が鮮新統ないし更新統である可能性を示唆した。Muraoka and Hase（1981）は、この環状地形の構造発達に重要であることを述べた。その後、長谷（1978）、石井・長谷（1978）、村岡・長谷（1980）は、Landsat画像中に見える青荷層堆積物の環状地形に注目し、この地形がカルデラに由来する可能性と、青荷層が鮮新統ないし更新統である可能性を示唆した。Muraoka and Hase（1981）は、この環状地形の環状に配列するデイサイト溶岩ドームの存在などから、八甲田火砕流堆積物が、更新世の石英安山岩質溶結凝灰岩と記載し、野田（1961）は、奥入瀬川沿いの八甲田溶結凝灰岩の記載を行い、堆積物中の球状の成因を議論した。また、今泉（1949）、古川・宮城（1964）は、弘前市大橋町付近で従来鉱石と呼ばれている岩相を記載し、これが溶結凝灰岩であることを示唆した。小高ほか（1970）は、黒石市付近の八甲田溶結凝灰岩のフィッショントラック（FT）年代を求め、2.0 Maおよび2.1 Maとできる。村岡・高倉（1988）は、八甲田火砕流堆積物が2つのユニットに分かれたことを示し、それぞれ八甲田第1期火砕流堆積物、八甲田第2期火砕流堆積物と命名した。また、彼らは、森本市錫ヶ坂周辺に分布する従来鉱物不明であった錫ヶ坂層（飯塚, 1930; 加藤ほか, 1958）, 錫ヶ坂凝灰岩（藤井, 1966, 1981; 三村, 1979）を八甲田第1期火砕流堆積物に対比するものとし、村岡・高倉（1988）, 村岡（1991a）は、八甲田第1期火砕流堆積物について0.72 ~ 0.55 Ma（7 個平均 0.65 Ma）、八甲田第2期火
砕流堆積物について 1.26 ～ 0.13 Ma（10 個平均 0.40 Ma）の K‒Ar 年代値を示した。一方、高島ほか（1990）は、熱ルミネンス（TL）年代測定を行い、八甲田第 1 期火砕流堆積物について 0.55 ～ 0.51 Ma（6 個平均 0.53 Ma）, 八甲田第 2 期火砕流堆積物について 0.29 ～ 0.19 Ma（24 個平均 0.25 Ma）を報告した。新エネルギー総合開発機構（1993）は、八甲田第 2 期火砕流堆積物について、0.41 ± 0.06 Ma の FT 年代を報告した。また、弘前市（2001），八甲田第 1 期火砕流堆積物について 0.65 ± 0.16 Ma, 八甲田第 2 期火砕流堆積物について 0.37 ± 0.08 Ma の FT 年代を報告した。白波瀬ほか（1989）は、八甲田火砕流堆積物の Sr 同位体組成を測定し、その結果から地殻物質の関与が見られないと解釈し、そのマグマ起源物質がマントルであったとした。

時沢・佐々木（1994）は、第 1 期八甲田火砕流堆積物中には、斜方輝石・斜長石が逆帯構造を示すことから、八甲田第 1 期火砕流の噴出前にマグマ混合が起こっていた可能性を示した。弘前市（2001）は、八甲田第 1 期火砕流堆積物について 0.65 ± 0.16 Ma, 八甲田第 2 期火砕流堆積物について 0.37 ± 0.08 Ma の FT 年代を報告した。宝田・村岡（1996）は、陸上の八甲田火砕流堆積物と水底の青荷火砕流堆積物の堆積構造の違いを示し、それらの流動・堆積機構の違いを議論した。佐々木（1998）は、八甲田第 0 期火砕流堆積物（本報告の黄瀬川火砕流堆積物；逆帯磁）の下位に、もう 1 枚逆帯磁の火砕流堆積物があることを報告した。一方、佐々木ほか（1998b）は、黄瀬川流域の八甲田第 1 期火砕流堆積物が更に 2 分できることを示し、下位のユニットを八甲田第 0 期火砕流堆積物（本報告の黄瀬川火砕流堆積物に対応する）と名付けた。鈴木ほか（1998,2001a,b）は、八甲田第 1 期火砕流に伴う広域火山灰が、これまで男鹿半島や房総半島、大阪平野で見つかっていたブリュニヌ・松仙クロン境界直上にある広域テフラに対比できることを示した。そして、ゼータ較正（Fleischer and Hart, 1972; Hurford and Green, 1983）した FT 年代測定の結果から、その噴出年代を 0.70 ± 0.25 Ma とした（鈴木ほか, 1998）。植木・鈴木（2002a）は、八甲田第 1 期火砕流堆積物の直下にある降下軽石層を記載し、また、その下にスコリア質火砕流堆積物（本報告の黄瀬川火砕流堆積物）が存在することを示した。一方、佐々木ほか（1998b）は、黄瀬川流域の八甲田第 1 期火砕流堆積物が更に 2 分できることを示し、下位のユニットを八甲田第 0 期火砕流堆積物（本報告の黄瀬川火砕流堆積物に対応する）と名付けた。鉱木ほか（1998,2001a, b），鈴木・植木（2002a）は、八甲田第 1 期火砕流に伴う広域火山灰が、これまでに男鹿半島や房総半島、大阪平野で見つかっていたブリュニヌ・松仙クロン境界直上にある広域テフラに対比できることを示した。そして、ゼータ較正（Fleischer and Hart, 1972; Hurford and Green, 1983）した FT 年代測定の結果から、その噴出年代を 0.70 ± 0.25 Ma とした（鉱木ほか, 1998）。植木・鈴木（2002a, b）は、八甲田第 0 期火砕流堆積物（本報告の黄瀬川火砕流堆積物；逆帯磁）の下位に、更にもう 1 枚逆帯磁の火砕流堆積物があることを報告した。水垣・宝田（2003）は、電子スピン共鳴（ESR）年代測定を行い、八甲田第 1 期火砕流堆積物について 0.7 ～ 0.6 Ma, 八甲田第 2 期火砕流堆積物について 0.4 ～ 0.3 Ma の年代値を報告した。

d. 十和田火山

早川 (1983a) は,十和田八戸降下テフラの分布・堆
積構造を示し、噴火様式や堆積運搬過程を明らかにした。早川（1983b）は、十和田中間層テフラの分布・粒度組成・年代値等を明らかにし、噴出源の位置、噴火の規模をまとめた。Hayakawa（1985）は、十和田カルデラ起源噴出物を詳細に取りまとめ、各層の分布・体積等を明らかにし、詳細な火山活動史を編成するとともに、十和田火山の噴出量の時間変化を示す段階ダイアグラムを作成した。

Hunter and Blake（1995）は、十和田カルデラ噴出物の詳細な岩石学的研究を行い、マグマ溜まりの進化過程を議論した。

久利・栗田（1999）は、十和田後カルデラ期のテフラ噴出物について、本質物の密度測定、ガラス包有物の化学組成の分析を行い、マグマ組成が系統的に珪長質へと変化し、火砕物がスコリアからパミスに遷移したことを明らかにした。久利・栗田（2003）は、二ノ倉降下スコリア堆積物の層序をより詳細に検討し、十和田八戸火砕流の噴出直後から二ノ倉降下スコリア層が噴出を始め、その後数千年の間に約数百年間隔で断続的に活動を繰り返したことを明らかにした。

5.1 概要
本図幅内の第四系は、大きく分けて沖浦カルデラ、八甲田カルデラの3つの中規模火砕流堆積物、及びこれらの先カルデラ・後カルデラ火山の噴出物からなる（村岡・高倉，1988）。図幅西部の沖浦カルデラからは、1.7 ~ 1.1 Maに数度の青荷凝灰岩の噴出があり、その後、後カルデラ火山の沖浦デイスイートが噴出した。そして、火山活動中心が東に移動し、八甲田カルデラの先カルデラ火山である南八甲田火山群が本図幅南東部で2度の大規模火砕流堆積物（八甲田第1期火砕流、八甲田第2期火砕流）の発生があり、八甲田カルデラが形成された（2.2図）。その後、本図幅北部で八甲田火山群の活動が開始し、誰岳、高田大岳、千床ノ岳、新栄町、百瀬川、住友岳、赤城山、大岳などの成層火山群が形成された（第2.2図）。また、このころ本図幅南西部で十和田先カルデラ期の火山活動があり、御岳部山溶岩や成層火山灰堆積岩及び石質軽石凝灰岩を、新田川石質凝灰岩として新たに定義する。

模式地 青荷川及び二庄内川沿い（黒石図幅地域内）。
層序関係 本凝灰岩は尾開山凝灰岩や虹貝凝灰岩を不整合に覆う。滝ノ脇川最上流部では、本凝灰岩が尾開山凝灰岩を被覆する関係が観察され、大小川沢では、本凝灰岩が虹貝凝灰岩を被覆する関係が観察される。ただし、北側の境界に位置する COLLINS 等の詳細は不明である。第5.1図に、南側の境界付近の渇谷川頂部付近に見られる尾開山凝灰岩及び虹貝凝灰岩の不整合関係のスケッチを示す。ここは、カルデラ内青荷凝灰岩の分布の東限であり、西黒石頭部地域では層厚600mを超える同凝灰岩、その東側に至って尖滅する位置にあたる。
第5.1図 尾関山凝灰岩と青荷凝灰岩との間の不整合関係のスケッチ
その位置は、滝ノ股川最上流部付近。

分布・層厚 本凝灰岩の分布は、本図幅地域の西側にあり、その北限を中野川沿い付近、その南限を浅瀬川の支流摺すりげざわ毛沢沿い、東限を滝ノ股川付近として、この内側全域に分布している。その最大層厚は550 m程度と見積もられる。

これは、直径約15 kmの沖浦カルデラ陥没域を埋積するものである。この分布の北限及び南限については、青荷凝灰岩が沖浦カリデラ陥没のもととなった冲浦環状正断層系にアバットしているため（村岡・長谷、1990）。青荷凝灰岩の基底部は地表に露出していない。

分布の東限では、青荷凝灰岩が急激にその層厚を減じ、尖滅する。この分布の東限については、青荷凝灰岩が東北脊梁中軸部の隆起帯を構成するカルデラ基盤岩類に対して、南北直線的な不整合面を介して被覆する。この場合には、後述のように、青荷凝灰岩の基底部の層厚が全て露出する場合と、基底部の層厚が露出せずにアバットする場合の、2つの関係が考えられる。本調査の結果によれば、後者の関係にあることが明らかである。

このため、分布の東限においても、青荷凝灰岩の基底部は地表に露出していない。したがって、地表の調査のみから、カルデラ内青荷凝灰岩の層厚を算定することは出来ない。

幸いにして、黒石図幅地域東部から本地域西部にかけた、新エネルギー総合開発機構（1983）が9坑の地熱調査井を掘削しているほか、金属鉱業事業団（1980）も1坑の鉱床調査井を掘削している。第5.2図に、これらデータやコアの観察結果をもとに、坑井のないところは重力データから推測しつつ作成した青荷凝灰岩の基底標高深度分布を示す。ほぼ同じ図はすでに村岡・長谷（1990）が示しているが、本調査では青荷凝灰岩分布の東限について、いくつかの新たな野外地質を新たに加えた。本図幅地域の青荷凝灰岩の最大層厚は西端で最大550 m程度と見積もられ、これは黒石図幅地域内のそれより50 m程度薄いだけである。しかし、基底面が平坦な範囲は西端近くのわずかな部分に限られ、カルデラ中央では、後述の沖浦中央ドームに対応する高まりが見られ、そして、東方の東北脊梁中軸部に近い部分では、幅約2.5 km程度の西に向かって傾斜する帯状となり、こ
の地帯は南北に連続している。重力データから見ると、この傾斜帯は沖浦カルデラの外側に至っても、南北、とくに北側に向かってよく連続するが、南側を見る限り、かなりの部分がカルデラ内で終わっている。青荷凝灰岩は、この傾斜帯の東端で、ほぼ尖滅する。青荷凝灰岩の厚さをこの傾斜帯の西端で500 m、東端で0 mとし、傾斜帯の幅を2.5 kmと仮定すると、傾斜帯の傾斜角は11°程度と見積もり、この角度はさほど大きくないが、このような地帯が幅2.5 kmに及ばば、アバットのような関係が起こり得るであろう。そして、これがカルデラ基盤の古地形を留めるものであるとすれば、東北脊梁中部の隆起（背斜）によるものであろう。

岩相 沖浦カルデラ内の青荷凝灰岩は、主に厚い塊状のダイサイト軽石凝灰岩（Op1, Op2, Op3, Op4）からなり、葉理が卓越するシルト質凝灰岩、砂質凝灰岩、珪藻土質シルト岩などの細粒凝灰岩（Os1, Os2, Os3, Op4）、温川土石流堆積物（Oc）、穴水沢玄武岩の溶岩（Ob1）、深成岩雫を含有する石質スコリア凝灰岩や石質軽石凝灰岩などの穴水沢石質凝灰岩（Ov）を挟む。これらはいずれも湖成環境で堆積したものである。このほかに、本報告では、1枚の穴水沢玄武岩の岩脈（Obd）と1つの穴水沢石質凝灰岩の火道(Ovb)を地質図上に記載した。

塊状の軽石凝灰岩は一般に数10 mの厚さを持ち、多
量の軽石と砂岩程度の粒径のガラス片・結晶片を含む。軽石は一般に発泡不良である。軽石は一般に径数cm大であり、露頭が大きくすれば径50cm大も珍しくない。毛無山北東では径1mを超えるものも認められる。本質をとるとときにパーライトを含むこともある。塊状の軽石凝灰岩中の不規則に綴乱した薄層を巻き込みていることが多く、しばしば乱堆積相を呈する。塊状のダイササイト軽石凝灰岩は水底火砕流堆積物に由来する。第5.3図は、本地域で最も青荷凝灰岩の観察に適した毛無山東方の最も大きな崖のスケッチである。この崖の位置や形状は地形図にも明瞭に示されている。ここで、最も厚い軽石凝灰岩は、葉理のある上部30mと、塊状の下部20mとに分けられるが、基本的には一単位の水底火砕流堆積物であり、合計で厚さ50mに達する。また、この崖の軽石凝灰岩中には、径50cmに達する軽石やパーライトの本質物が珍しくない。この厚さ50mに達する軽石凝灰岩の基底部は第5.4図のように、下位の細粒凝灰岩を明らかに流動時に浸食したと思われるコンボリュート構造面を介して重なっている。水底火砕流であった一つの証拠とみなせる。軽石凝灰岩は二次的な流動を受けて、葉理を示すことがある。軽石凝灰岩の軽石は、斑晶として、斜長石、角閃石、普通輝石、紫蘇輝石、磁鉄鉱、石英などを含む。

細粒凝灰岩は、シルト質凝灰岩、砂質凝灰岩、珪藻土質シルト岩などを一括したものである。シルト質凝灰岩や砂質凝灰岩は軽石質であり、一般に葉理を示す。珪藻土質シルト岩は乱塊割れを特徴とし、塊状のことが少なくて、これら細粒凝灰岩は軽石凝灰岩とリズミカルに互層していることが多い。たとえば、前出の毛無山東方の崖の厚さ50mに達する軽石凝灰岩の下位は、ときに
57°E（写真の右側）に近い方向から来た水流中の小礫をブロックし、その前面に沈積させていることが明瞭のため、偽礫起源であろう。しかし、ここにいう一単位の細粒凝灰岩の下部に見られる軽石凝灰岩団塊は、青荷凝灰岩中に普遍的に見られ、その産状も偽礫とは異なる特徴を示す。軽石凝灰岩団塊の周辺を厚さ数cmから10数cmの液状化したようなシルトが団塊に対して同心円的な葉理をもってコーティングしていること、塊状の軽石凝灰岩層（Fiske and Matsuda, 1964のmassive part）が崩壊して、その上位の細粒凝灰岩（Fiske and Matsuda, 1964のbedded part）に向かって浮上しているように見えることなど、いくつかの特異な産状を示す。したがって、この軽石凝灰岩団塊層はダイアピル化した後に、より重いbedded partの沈積・脱水固結に伴って、その下位のより軽い軽石の多いmassive partがRayleigh-Taylor型の重力不安定現象を起こし、ダイアピル化したように見える。

第5.4図 青荷凝灰岩の軽石凝灰岩層の基底のコンボリュート構造
毛無山東方の巨大な谷の中腹に見られる層厚約60mの細粒凝灰岩卓越層の上位を厚さ約50mの軽石凝灰岩層がコンボリュート構造を介して、浸食的に覆う様子を示す。その位置は第5.3図参照。

薄い軽石凝灰岩層を挟むが、全体的には厚さ約60mにわたって細粒凝灰岩が卓越する（第5.3図）。したがって、地質図上では、これを一単位の細粒凝灰岩として表現した。これら細粒凝灰岩はしばしば乱堆積相を呈する。

複数層からなる一単位の細粒凝灰岩の比較的下部には、径0.2～5m程度の軽石凝灰岩団塊がしばしば見られる（村岡・長谷、1990）。たとえば、前出の毛無山東方の崖の厚さ約60mの細粒凝灰岩卓越層の基底部には、軽石凝灰岩団塊が見られる（第5.3図）。これらの軽石凝灰岩団塊はよく似たものとして、まれに、偽礫起源の軽石凝灰岩団塊が見られることもある。たとえば、第5.5図は砂子沢沿いの露頭写真である。この場合に、軽石凝灰岩団塊が明らかに露頭面の走向であるN57°E（写真の右側）に近い方向から来た水流中の小礫をブロックし、その前面に沈積させていることが明瞭。スケールは中央の軽石凝灰岩団塊の横方向が約1m。

第5.5図 砂子沢中流域の偽層起源の青荷凝灰岩の軽石凝灰岩団塊
軽石凝灰岩団塊が明らかに露頭面の走向であるN57°E（写真の右側）に近い方向から来た水流中の小礫をブロックし、その前面に沈積させていることが明瞭。スケールは中央の軽石凝灰岩団塊の横方向が約1m。
川入口付近など、本堆積物は、ときに青荷凝灰岩の乱堆積性のシルト岩層レンズを含む。溝ノ谷川などで見ると、この土石流堆積物は厚さ最大10m以上の、少なくとも5～6層の堆積単位がなり、土石流が何度か起こったことが明らかである。これらは、軽石凝灰岩も挟んでいる、このような土石流堆積物が、地域的には、沖浦カルデラ内の南東端に集中することから、その生成は沖浦カルデラ形成当時の、南または南東の古地形に由来するものと見られる。しかも、その層序や構造から考えると、この温川土石流堆積物のほとんどは堆積単位が沖浦カルデラ内の北や北西に向かって、急激に解体するものと推定される。したがって、個々の堆積単位については、大きく見ると、本堆積物は青荷凝灰岩の軽石凝灰岩や細粒凝灰岩などと同時異相の関係にあると考えられる。

穴沢玄武岩は、沖浦カルデラの中央付近に分布し、少なくとも4枚の溶岩流からなる。個々の溶岩流は柱状節理の発達する塊状の部分と、その上下のクリンカーの部分からなる。村岡（1985）は青荷川上流域のルート調査の柱状図を示し、本報告の穴沢玄武岩に相当する青荷玄武岩の溶岩流を3枚記載し、このうち、上位の2枚はクリンカーを介して直接重なり合っているとした。本研究の過程で、二庄内ダムが建設され、その原石採取場は穴沢玄武岩の分布地域に造成された。その位置は、青荷川の南側であり、2万5千分1の地形図「温川」において、標高801mのピークが記されている地点である。第5・6図はこの原石採取場の写真及びその説明図である。この図のように、ここでは青荷凝灰岩中に3枚の溶岩流が見られる。その層厚は、下位より、ほとんど塊状部分からなる25mの溶岩流、塊状部分が7mで上位
凝灰岩は、本質物と思われるスコリアは比較的少なく、ほとんど細粒物を構成している。凝灰岩の大部分は大小の亜角礫からなり、玄武岩礫が最多も多い、花崗岩質岩礫や現在の岩礫を含んでいる。この場合、玄武岩礫も発泡不全の本質物である可能性が高い。これらは水底噴出物であるため、確かなことはいえないが、その岩相や噴出物の広がりから見て、単純な弾道放出のみによるストロンボリ式噴火とは考えられず、多少とも爆発的なプルノ式噴火や細粒物のサージなどの要素を伴ったマグマ水蒸気噴火（phreatomagmatic eruption）の産物と思われる。村岡（1985）が青荷川上流域の柱状図で3枚の溶岩流の上位に、厚さ約40 m のスコリア凝灰岩と礫岩の互層を記載しているが、これも同じ層準を見ているものと思われる。これらの凝灰岩は、陸上噴火であっても、より狭い範囲に明瞭な火砕丘やタフリングを形成したであろう。しかし、水中のために、それよりは広く薄く分布することになったと考えられる。それでも、その分布はせいぜい沖浦カルデラ近辺で、あまり外側には広がっていないように思われる（地質断面図参照）。

穴水沢石質凝灰岩は、沖浦カルデラ中央付近に分布し、穴水沢玄武岩の形成と密接に関係する石質スコリア凝灰岩と石質軽石凝灰岩とからなる。前出の二庄内ダムの原石採取場では、穴水沢玄武岩の上位に、玄武岩礫、花崗岩質岩礫や斑れい岩の深成岩礫などを含む、石質スコリア凝灰岩が分布する。その厚さは3枚の溶岩流の上位で3 mであり、3枚の溶岩流の下位で12 mである。上位のものの産状を、第5.9図に示す。このように、この
な境界を川と同じ方向の岩脈の側面が川沿いに一部露出したものを見た方がもっともらしいので、本報ではその方向を ENE–WSW とした。

穴水沢石質凝灰岩の火道（Obv）は、青荷川上流の第 5.10 図の露頭観察にもとづく。この露頭では、南東側の珪藻土質シルト岩と、北西側の穴水沢石質凝灰岩ように似た石質凝灰岩が接している。両者の境界自体は、第 5.11 図に示すように、見かけ上、断層のように見える。野澤（2001）もこの露頭を観察し、これを彼の主题である池部カルデラ内部を分断する主要断層の根拠とした。しかし、この露頭は単純な断層とするには、いくつかの疑問点がある。まず第一に、地質図に示すように、この地域のシルト岩層は比較的薄いものであるが、第 5.11 図のように、両岩石の接触部の反対側（北西側）にも、シルト岩の露頭があることである。したがって、直接接する南東側のシルト岩がスランプ褶曲し、せん断化している割には、断層としての落差はあまり大きくない。更にいえば、もし、石質凝灰岩が間になければ、落差はほとんどないことになる。第二に、石質凝灰岩を見ると、第 5.12 図のように、ほとんど細粒の基質を欠き、ラピリサイズから径 50 cm 程度の垂直断面が数多く見られ、その内部が珪化し、表面が赤色に酸化しているものが少なくないことである。たとえば、第 5.12 図右下のように、ごくまれに青荷凝灰岩のシルト岩礫も含まれるが、このような異質礁でさえ、珪化し、表面が赤色に酸化している。第三に、この石質凝灰岩の巣種を変質物も含めてモード測定の要領で線に 108 個数えたところ、そのパーセントは、斜長石巨晶玄武岩（穴水沢玄武岩の特徴）が 28.7%，スコリアが 27.8%，軽石が 20.4%，輝石が 12.0%，斑岩の目立たない玄武岩が 7.4%，花崗岩岩屑岩が 2.7% であったことである。これは、青荷凝灰岩の中でも、深成岩礁を含有する割合が大きく、深部からの供给源の可能性を示唆している。第四に、第 5.13 図は珪藻土質シルト岩と石質凝灰岩との境界部の写真であるが、角礁の伸張方向やその配列が境界部に平行か、または垂直に伸びているように見えることがある。第五に、この石質凝灰岩は穴水沢石質凝灰岩と類似しているものの、後述の沖浦中央ドームの中心近いため、その層序的な位置は、全ての穴水沢石質凝灰岩より下位であることがある。これらのことから、本報ではこれを穴水沢石質凝灰岩の一つの火道とみなし、その充填物を火道角礁岩とみなす。ただし、火道であるとしても、細粒部の抜けたフォールバックを見ているのであり、変質がごく軽微であることから、湖水の浸透し得る
程度に、地表面に近い火道の部分が削剥されたものと推定する。
なお、これら穴水沢石質凝灰岩に特徴的に含まれる深成岩岩片は、いずれもトーナル岩−花崗閃緑岩からなる。苦鉄質鉱物として粗粒角閃石を主とする岩相と、細粒黒雲母を主とする岩相の2種類が見られる。前者は、石英、斜長石、カリ長石、角閃石、磁鉄鉱を多く含み、少量の黒雲母、アルメナイト、微量の輝石、ジルコンを伴う。斜長石の周辺には、石英とカリ長石とのなす文象−微文象組織が普通に見られる。後者は、石英、斜長石、カリ長石、黒雲母、及び少量の磁鉄鉱と輝石を含む。石英はもともと粗粒であったものが、多数の割れ目によって円形細粒状化している。斜長石はほとんど全て虫食い状の融食孔を持ち、持続構造をもつ形態となっていている。黒雲母は斜長石、磁鉄鉱、石英などとともに、細粒結晶集合体として産し、集合体の外周に角閃石の形状を留めるものが多い。以上のことから、後者は玄武岩質マグマより一部岩相が玄武岩マグマに互いに融解したものである。
なお、青荷凝灰岩の軽石の化学組成については、村岡（1991a）にまとめられている。第5.1表には、穴水沢玄武岩及び穴水沢石質凝灰岩中の深成岩岩片の化学組成を、未公表資料であるMuraoka（1989MS）より転載する。
地質時代 青荷凝灰岩のK-Ar年代は村岡（1986, 1991a）より、1.7～0.9 Maとされてきたが、このうち0.9 Maは毛無山火砕岩によるものであるので、本報の
あり、青荷凝灰岩が東側のカルデラ基盤にアバットして堆積した場合の東西断面の模式図である。この場合に
は、地表における青荷凝灰岩の各層が、堆積時の湖岸に多少平行になる傾向があつたとしても、第 5.15 図 d
のように、閉じた分布となる必然性はない。少なくとも、定義によれば、1.7 〜 1.1 Ma となる。

沖浦カルデラの東限 沖浦カルデラの環状地形は西半円のみが明瞭であり、その東限の構造については、Mu-
raoka and Hase（1981）以来、持ち越されてきた課題であつた。沖浦カルデラ東端の地域を対象とする本研究で
は、この問題に一応の見通しを得たのでそれについて述べる。第 5.15 図は沖浦カルデラの東限に関する単純化
した 2 つのモデルを示す。すなわち、第 5.15 図 a は、沖浦カルデラの東半円が初生的に存在したが、その部
分の青荷凝灰岩が東北脊梁中軸部の隆起に伴って削剥された場合の東西断面の模式図である。この場合には、青
荷凝灰岩の上部を除くほぼ全層準が、カルデラ内の東限に必然的に現れるため、地表における青荷凝灰岩の各層
は第 5.15 図 b のように、東方に向けた分布をつくることになる。そして、青荷凝灰岩のほぼ全層準が現れる東縁の地帯は、広い幅にわたって、全て西傾斜の構造である。他方、第 5.15 図 c は、沖浦カルデラが初生的に半円形で

第 5.14 図 碓れい岩の顕微鏡写真
左がオープンニコルで、右がクロスニコル。回りの結晶は全て斜長石で、その間に部分融解
し、発泡したガラスが見られる。バーの長さが 0.5 mm。

第 5.15 図 沖浦カルデラ東部の青荷凝灰岩の 2 つの構造モ
デル
a) 初生的には東半分もあったが、脊梁の隆起削
剥で失われた場合の断面。b) この場合には、東
端の青荷凝灰岩の下部の全層準が西傾斜となって
現れる。c) 初生的に半円形であった場合の断面。
d) この場合には地層が東で閉じる必然性はない。

第 5.1 表 穴水沢石質凝灰岩中の深成岩岩片と穴水沢玄武岩の化学組成

<table>
<thead>
<tr>
<th>Rock no.</th>
<th>B10510-068</th>
<th>B10510-068</th>
<th>B10510-068</th>
<th>B10510-068</th>
<th>B10510-068</th>
<th>B10510-068</th>
<th>B10510-068</th>
<th>B10510-068</th>
<th>B10510-068</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit</td>
<td>Gabbr (Ov)</td>
<td>Enstatite (Ov)</td>
</tr>
<tr>
<td>SiO2</td>
<td>42.31</td>
<td>70.06</td>
<td>71.06</td>
<td>49.53</td>
<td>51.43</td>
<td>52.73</td>
<td>52.87</td>
<td>52.87</td>
<td></td>
</tr>
<tr>
<td>TiO2</td>
<td>0.84</td>
<td>0.58</td>
<td>0.56</td>
<td>0.98</td>
<td>1.05</td>
<td>1.12</td>
<td>1.06</td>
<td>1.06</td>
<td></td>
</tr>
<tr>
<td>Fe2O3</td>
<td>2.59</td>
<td>1.06</td>
<td>1.05</td>
<td>1.65</td>
<td>1.97</td>
<td>1.85</td>
<td>1.79</td>
<td>1.79</td>
<td></td>
</tr>
<tr>
<td>FeO</td>
<td>12.77</td>
<td>14.22</td>
<td>21.06</td>
<td>15.57</td>
<td>17.19</td>
<td>14.69</td>
<td>16.32</td>
<td>16.32</td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>5.70</td>
<td>9.44</td>
<td>9.93</td>
<td>8.84</td>
<td>9.34</td>
<td>8.94</td>
<td>9.49</td>
<td>9.49</td>
<td></td>
</tr>
<tr>
<td>Na2O</td>
<td>0.84</td>
<td>3.49</td>
<td>2.47</td>
<td>2.14</td>
<td>2.50</td>
<td>2.45</td>
<td>2.69</td>
<td>2.69</td>
<td></td>
</tr>
<tr>
<td>K2O</td>
<td>0.07</td>
<td>1.80</td>
<td>2.00</td>
<td>0.27</td>
<td>0.27</td>
<td>0.36</td>
<td>0.37</td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td>P2O5</td>
<td>0.12</td>
<td>0.11</td>
<td>0.12</td>
<td>0.12</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>P2O7</td>
<td>0.06</td>
<td>0.04</td>
<td>0.01</td>
<td>0.18</td>
<td>0.72</td>
<td>0.01</td>
<td>0.10</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>H2O</td>
<td>0.06</td>
<td>0.36</td>
<td>0.12</td>
<td>1.06</td>
<td>0.32</td>
<td>0.12</td>
<td>0.16</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>99.76</td>
<td>99.41</td>
<td>98.73</td>
<td>99.50</td>
<td>99.74</td>
<td>100.02</td>
<td>99.72</td>
<td>99.72</td>
<td></td>
</tr>
</tbody>
</table>

その東縁に、幅広い西傾斜の帯や青荷凝灰岩のほぼ全層準が現れないことはない。実際の青荷凝灰岩の層序や構造を、この2つのモデルと比べると、明らかに、後者のモデルに近い。したがって、沖浦カルデラは初生的に、半円形の陥没構造であったと結論される。

上記の2つのモデルは、沖浦カルデラ形成時に、東北脊梁中軸部がまだ存在しなかったか、すでに存在していたかという問題に置き換えることができる。現在、地形的にも、地質的にも、隆起した東北脊梁中軸部が存在することは明らかである。重力データに見られるように、カルデラ内青荷凝灰岩の分布の東限付近は、西側を低異常とする南北帯状の重力急傾斜帯で特徴づかれ、東北脊梁中軸部の側が構造的に隆起（褶曲）していることと示す。この点から、実際の青荷凝灰岩の層序や構造が第5.15図cやdに近いということは、青荷凝灰岩堆積時に、東北脊梁中軸部がすでに相当、隆起していたと理解される。

村岡・長谷(1990)は沖浦カルデラ陥没域周辺の隆起地形から、ここに直径50 kmに及ぶ広域ドームが存在したことを示し、地質図上に表現していた。しかし、走向傾斜の記載もなく、十分、実証的な記述ではなかった。本研究の過程で、二庄内ダムが建設され、その原石採取場が穴水沢玄武岩の分布地域に造成された。ここに、穴水沢玄武岩や穴水沢石質凝灰岩の広大な露頭が造成された。ここでの観察から、ドーム状構造の存在はほぼ確実となった。穴水沢玄武岩の分布や穴水沢石質凝灰岩の傾斜方向は、ENE-WSW方向に長軸を持つドーム状構造の存在を示している。小高ほか(1970)や村岡・長谷(1990)はカルデラ内に同心円的な一つの向斜を見出し、村岡・長谷(1990)はこれを青荷向斜と呼んだ。したがって、青荷向斜の内側は、村岡・長谷(1990)が沖浦中央ドームと呼んだように、論理的にドーム状の構造となる。しかし、その中心の位置は明確でなかったし、中心部に至るまで外側への傾斜が存在するかどうかは必ずしも明らかでなかった。この点から、本報告では、中心部のドーム状構造を、特に、沖浦中央ドームと呼ぶことにする。この構造はバイアズ型カルデラの再生ドームに相当するものといえよう（Smith and Bailey, 1968）。

5.2.2 沖浦デイサイト（Ok,Od）
命名 本層は村岡・長谷（1990）の命名による。岩井（1965）や酒井ほか（1966）は本地質単元を、青荷層上部層としていた。村岡・長谷（1990）はこれが沖浦カルデラの後カルデラ丘であることを、これを区別して沖浦デイサイトと命名した。なお、村岡・長谷（1990）では毛無山火砕岩を青荷凝灰岩に含めていたが、本報告では、これが毛無山の沖浦デイサイトの先駆的な活動であることや、陸成であることを考慮して、沖浦デイサイトに含める。

模式地 黒石市二庄内川沿い（毛無山火砕岩については黒石市毛無山の南）。
層序関係 本地質単元は青荷凝灰岩の上位を覆う。黒石図幅地域内では、青荷凝灰岩と本地質単元との間に、
一部指交関係も見られる（村岡・長谷，1990）。しかし，本図幅地域内では，指交関係なしに青荷凝灰岩を覆い，しかも，毛無山火砕岩が溶結していることから見ると，本地質単元噴出時の古地理環境は陸成のものに変化していた可能性が強い。

分布・層厚 本地質単元は毛石図幅地域内では，ニッ森，田代山，雷山，毛無山などのビュート地形を構成し，それらが沖浦カルデラ内に線状に配列している。本地域内には標高982 mの毛無山の山頂があり，その周辺が主な分布地域である。このほか，Muraka and Hase（1981）は，大小沢川の下流側に，デイサイト溶岩小さな露出を記載していた。しかし，村岡・高倉（1988）では定点でないため，これを削除していた。本報告では後述するように，とこもデイサイト溶岩であることが明確となった。そのため，本地質単元の沖浦カルデラ内の環境配列は，今後広がることとなった。

第5.3図のように，毛無山東方の崖では明瞭に青荷凝灰岩と奥入瀬川との間の境界が見られ，この崖の頂部はビュートの平坦面に近い。このことから見ると，本地質単元の本図幅地域内の層厚は，毛無山山頂付近で最大であり，約250 mと推定される。

岩相 本地質単元は，毛無山火砕岩（Ok）とデイサイト溶岩（Od）とからなる。毛無山火砕岩は毛無山北側の本図幅地域東端で，厚さ20 mであり，毛無山東方の崖で（第5.3図）で，厚さ5 mである。毛無山火砕岩は本質物を多量に含み，径1～2 cmの大型球顆を多量に含む溶結凝灰岩である。結晶片として，石英，斜長石，角閃石，普通輝石，磁鉄鉱を含む。この組み合わせは本質レンズの斑晶も同一である。本質レンズはバーライト割れ目を有する。それ以外の基質はガラス片が扁平化しているが，かなりの空隙を保存している。基質中にはスコリアないしも見える。毛無山火砕岩は，その分布が毛無山周辺に限定されることから，毛無山における沖浦デイサイトの溶岩の噴出に先行する火砕流を表すものとみなされる。デイサイト溶岩は斑晶を多く含むものの，石基はガラス質であり，多孔質である。たとえば，毛無山においてはバーライト溶岩が多く，普通的に中空状の球顆を含んでいる。球顆の大経は，径1 cm大のものが互いに接触し合って，密集している。大小沢川の小さなデイサイト溶岩の露出も，この球顆の多い特徴によって，沖浦デイサイトと識別される。斑晶は，斜長石，紫蘇輝石，普通輝石，角閃石，磁鉄鉱からなり，石基はガラス質であるが脱ガラス化が進んでいる。

地質時代 本地質単元のK-Ar年代は，毛無山火砕岩に関して，村岡（1986，1991a）より，0.9 Ma程度と見積もられる。デイサイト溶岩の年代に関しては，黒石図幅地域内の湯山西方の一部両付近のものが，村岡・長谷（1990）より，0.7 Ma程度と見積もられる。

5.3 奥入瀬川火砕岩（Hsp）

命名 Hayakawa（1985）を改称，Hayakawa（1985）は，本火砕岩をOirase scoria coneとして記述している。また，早川（1993）は，奥入瀬底スコリア丘として記述している。

模式地 奥入瀬川玉簾の滝周辺（N40° 30′ 1.2″，E140° 57′ 49.9″）。ここもデイサイト溶岩が見られる。

層序関係 奥入瀬川火砕岩の上下に子ノ口湖成層が見られる。また，スコリア層の間にも数枚の層厚数10 cmの湖成層が部分的にレンズ状に挟まっている。奥入瀬川火砕岩の上位には層厚約10 mの子ノ口湖成層を挟んで，層厚15 m以上の大甲第1期火砕流堆積物が見られる。

分布・層厚 模式地周辺300 mの範囲に分布する。層厚は最大で20 m程度。

岩相 奥入瀬川火砕岩は主に径50 cm以下のスコリア火山岩塊（火山弾）及び火山礫で構成される。確認できたスコリアの最大径は約90 cmであった。スコリア火山岩塊及び火山礫は，中心から放射方向に伸びる冷却節理がよく発達している。スコリアの表面には，厚さ1～2 cm程度のガラス質の急冷縁ができている。スコリアは，黒色（Black，N1；ロックカラー，The Rock–Color Chart Committee, 1995）や，やや茶色がかった黒色（Brownish black，5YR 2/1）を示す。数cm以下の気泡を含むが，発泡度は非常に低い。大きいスコリアでは，中心部を放射方向に伸びる急冷で発泡度の低い部分がある。スコリア火砕岩の堆積物は礫支持の部分が多い。基質部は，かんらん石含有紫蘇輝石普通輝石玄武岩質安山岩である。堆積物は礫支持の部分が多い。基質部の量は比較的少ないと考えられ，一部指交関係も見られる（村岡・長谷，1990）。しかし，本地質単元の沖浦カルデラ内の環状配列は，更に広がることとなった。

分布・層厚 本地質単元は，毛無山火砕岩（Ok）とデイサイト溶岩（Od）とからなる。毛無山火砕岩は毛無山北側の本図幅地域東端で，厚さ20 mであり，毛無山東方の崖で（第5.3図）で，厚さ5 mである。毛無山火砕岩は本質物を多量に含み，径1～2 cmの大経を含む溶結凝灰岩である。結晶片として，石英，斜長石，角閃石，普通輝石，磁鉄鉱を含む。この組み合わせは本質レンズの斑晶も同一である。本質レンズはバーライト割れ目を有する。これ以外の基質はガラス片が扁平化しているが，かなりの空隙を保存している。基質中にはスコリアないしも見える。毛無山火砕岩は，その分布が毛無山周辺に限定されることから，毛無山における沖浦デイサイトの溶岩の噴出に先行する火砕流を表すものとみなされる。デイサイト溶岩は斑晶を多く含むものの，石基はガラス質であり，多孔質である。たとえば，毛無山においてはバーライト溶岩が多く，普通的に中空状の球顆を含んでいる。球顆の大経は，径1 cmの大ありが互いに接触し合って，密集している。大小沢川の小さなデイサイト溶岩の露出も，この球顆の多い特徴によって，沖浦デイサイトと識別される。斑晶は，斜長石，紫蘇輝石，普通輝石，角閃石，磁鉄鉱からなり，石基はガラス質であるが脱ガラス化が進んでいる。

地質時代 本地質単元のK-Ar年代は，毛無山火砕岩に関して，村岡（1986，1991a）より，0.9 Ma程度と見積もられる。デイサイト溶岩の年代に関しては，黒石図幅地域内の湯山西方の一部両付近のものが，村岡・長谷（1990）より，0.7 Ma程度と見積もられる。
は、黄色（Pale yellowish orange, 10YR 8/6）やうすい茶色（Light brown, 5YR 5/6）の色を示す。直径30 cm大の変質した安山岩片や直径15 cm大の凝灰岩片を取り込んでいるのが確認できた。上部付近では、厚さ10数 cm～数10 cm程度の逆級化した層理が観られる。スコリア火山塊の表面に発達したガラス質急冷縁が見られること、上下を湖成層に挟まれることから、湖底に噴出した水底スコリア丘の一部である可能性が高い。

地質時代 は子ノ口湖成層に挟まれることから、子ノ口湖成層と同時異相の関係であるといえる（第2.2図）。また、上位の八甲田第1期火砕流堆積物の発生年代が約0.7～0.6 Maである（村岡・高倉, 1988；鈴木ほか, 2001a; 水垣・宝田, 2003）ことから、100～80万年前ごろに噴出した可能性が高い（第2.2図）。

5.4 子ノ口湖成層（Ln）

命名 中川ほか（1972）、村岡・高倉（1998）は、奥入瀬川沿いに分布する湖成堆積物を子ノ口層と記載した。

模式地 奥入瀬川五両の滝周辺（N40°28′58.3″, E140°57′5.9″）。

層序関係 模式地周辺では、八甲田第1期火砕流堆積物が子ノ口湖成層を直接覆う。また、間に奥入瀬川火砕岩が挟まれている地点がある（N40°30′1.2″, E140°57′49.9″）。

分布・層厚 奥入瀬川沿いや黄瀬川に局所的に分布する。層厚は、最大40～50 m程度。

岩相 砂屑。シルト層からなる（第5.18図A）。砂層は、主に極粗粒砂～粗粒シルトサイズの粒子でできている。比較的淘汰がよい。砂層の層厚は、数cm～20cm程度である。砂層には斜交ラミナが発達している場合がある。砂層は、うすい黄色（Yellowish gray, 5Y 8/1）やベージュ色（Very pale orange, 10YR 8/2）を示す。砂屑は、直径数cm以下の軽石を含む。軽石の色は、白色（White, N9）や灰色（Very light gray, N9～Medium gray, N5）である。シルト層の厚さは数cm～数10cm程度である。シルト層は、砂屑と互層する。シルト層は、主に細粒砂～シルトサイズの粒子でできている。シルト層の色は、ベージュ色（Very pale orange, 10YR 8/2）やうすい黄色（Pale yellowish orange, 10YR 8/4）を示す。

地質時代 八甲田第1期火砕流堆積物（0.7～0.6 Ma；村岡・高倉, 1988；鈴木ほか, 2001a; 水垣・宝田, 2003）より以前である。黄瀬川火砕流堆積物（5.6.2節参照；約100～80万年前）との層位関係は不明である。しかし、同時代の堆積物である可能性が高い。本報告では、約100～70万年前ごろの堆積物であるとしておく（第2.2図）。

5.5 小国湖成層（Lo）

命名 村岡・高倉（1988）。彼らは、温川周辺に分布する湖成堆積物を、小国湖成層と命名した。

模式地 善光寺平に至る道路沿い標高400 m付近（N40°31′17.9″, E140°46′40.8″）。

層序関係 模式地付近で、小国湖成層が八甲田第1期火砕流堆積物を直接覆う層が確認できる。一方、横足山北西の二庄内ダム北東の露頭（N40°35′50.0″, E140°45′2.0″）では、青荷凝灰岩の上位に小国湖成層が見られる。

分布・層厚 温川周辺及び横足山西部付近。堆積物の層厚は、全体で20 m以上である。堆積物の分布から、沖浦カルデラ内にできた湖の底に堆積した湖成層であると考えられる。
岩相 砂及びシルト、少量の礫を含む、主に中粒砂～シルトサイズの粒子が多い、青荷凝灰岩起源の軽石の細片が多く含まれている（第5.18図B）。ラミナが発達している。レンズ状の斜交構造も見られる。厚さ数cmの緩衝構造が顕著である。断層による二次的なブロッコ状の変形構造が見られる。

地質時代 小国湖成層の堆積年代は、約1.1 ～ 0.5 Maであると考えられる。八甲田第1期火砕流堆積物を直接覆う露頭が存在することから、少なくとも小国湖成層の一部は、八甲田第1期火砕流堆積物の噴出年代（0.7 ～ 0.6 Ma；村岡・高倉, 1988；鈴木ほか, 2001a；弘前市, 2001；水垣・宝田, 2003）よりもしないと考える。今というと、この火山灰層の対比はついていない。大小川沢上流では、標高650 mの高さよりも下位のレベルでは、八甲田第1期溶岩流・火砕岩が露出している。ここでは、上位に層厚約70 mの大小川沢石流堆積物が直接覆っている。ここでは、層厚約10 mの2枚のケア溶岩流の断面が見られる。間に層厚約5 mのクリンカー部が発達している。岩質は、かんらん石含有普通輝石玄武岩、無斑晶質玄武岩、紫蘇輝石普通輝石安山岩である。

成層火山体を構成していたと推定されることから、火砕岩も存在すると考えられる。そのため、本ユニットの名称を「溶岩・火砕岩」とした。しかし、火砕岩については良好な露頭が観察できなかったため、その詳細は不明である。大小川沢下流付近の露頭では、八甲田第1期火砕流堆積物と新第三系幌内川安山岩との間に多数の降下軽石堆積物や降下スコリア堆積物が露出している。これら2の下部付近の堆積物は、八甲田第1期溶岩流・火砕岩の成長にともなう降下堆積物である可能性がある（5.6.5 八甲田第1期火砕流堆積物参照）。

地質時代 青荷川沿いの溶岩で、0.75 ± 0.16 MaのK–Ar年代が報告されている（新エネルギー総合開発機構, 1987）。また、大小川沢沿いの溶岩で、0.61 ± 0.06 Ma, 1.12 ± 0.24 Ma, 0.53 ± 0.22 MaのK–Ar年代値が報告されている。
されている（新エネルギー総合開発機構，1987）。大小川沢上流の鶴ヶ峯北西部では，0.70 ± 0.22 Ma の K‒Ar年代値が報告されている（新エネルギー総合開発機構，1987）。模式地で，5枚の溶岩流から磁化方位計（フラックスゲート，FGM-3D1L，Walker Scientific Inc.）で岩石残留磁化方位を測定した結果，すべて逆帯磁であった。そのためこの溶岩流の噴出年代は，松山逆磁極期にあたり，0.78 Ma 以前であるといえる。また，下位の青荷凝灰岩噴出年代は 1.7 〜 1.1 Ma である。したがって，本報告では，南八甲田第 1 ステージ溶岩・火砕

第 5.20 図 黄瀬川火砕流堆積物
A. 黄瀬川沿い林道標高 310 m 付近の模式地の露頭。柱状節理が発達している。B. A の拡大写真。

第 5.21 図 黄瀬川火砕流堆積物と八甲田第 1 期火砕流堆積物間の地層
黄瀬川と奥入瀬川の合流地点付近の露頭。A. 黄瀬川火砕流堆積物（Hto）と八甲田第 1 期火砕流堆積物（Ht1）間に見られる堆積物。B. 非溶結の黄瀬火砕流堆積物（Hto）の上部。C. 八甲田第 1 期火砕流堆積物（Ht1）直下の降下軽石。D. 黄瀬川火砕流堆積物（Hto）との間に見られる地層。
5. 6. 2 黄瀬川火砕流堆積物（Hto）

命名 新称。佐々木ほか（1998b）が八甲田第0期火砕流堆積物と呼んだ堆積物を再定義。村岡・高倉（1988）が八甲田第1期火砕流堆積物と呼んだ堆積物の一部に相当する。ここでは、本堆積物の岩相が上位の八甲田第1期火砕流堆積物と異なり、境界部には土壌や降下軽石等の明瞭な時間間隔が存在することから区分した。

模式地 黄瀬川標高310m付近の林道沿い（第5.20図；N40°33′49.5″, E140°57′30.5″）。

層序関係 黄瀬川と奥入瀬川の合流付近（N140°33′37.8″, E140°58′42.4″）では、非溶結の黄瀬川火砕流堆積物の上位に、数枚の、厚さ数cm～数mの降下軽石層、風成土壌等を挟んで、厚さ10m以上の八甲田第1期火砕流堆積物が見られる（第5.21図）。また、黄瀬川標高280m付近の林道沿い（N140°33′46.5″, E140°57′44.8″）では、八甲田第1期火砕流堆積物と黄瀬川火砕流堆積物の間に、1枚の厚さ2～3mの降下軽石堆積物が見られる。この降下軽石堆積物と八甲田第1期火砕流堆積物の間に、厚さ50cm程度の風成土壌が見られる。植木・鈴木（2002a,b），鈴木・植木（2002b）は、黄瀬川火砕流堆積物の下位に更にもう1枚の逆帯磁の火砕流堆積物を報告しているが、本調査では確認できなかった。

分布・層厚 黄瀬川周辺に分布する。層厚は少なくとも15m以上。

岩相 黄瀬川火砕流堆積物はスコリア質火砕流堆積物である。模式地では、強溶結し、垂直方向の冷却節理が発達する溶結凝灰岩相を示す（第5.20図）。溶結部には、厚さ数cmの水平方向の平行節理が発達している部分も存在する（第5.20図B）。上部付近は非溶結である（第5.21図B；第5.22図B）。基底部は本調査では見出せなかった。本質物質はスコリアであり、比較的多量に含まれる。スコリアの岩相は、かんらん石含有普通輝石紫蘇輝石安山岩である。スコリアの最大径は5cm程度であり、扁平化しているスコリアも見られる。特に上部付近の非溶結部では、扁平化が1：20のスコリアも見られる（第5.21図B）。スコリアは、厚さ数mm程度の比較的平坦な気泡がある。スコリアの色はこげ茶色（10YR4/2, 5YR3/4, 5YR5/6）を示す。黄瀬川火砕流堆積物は、厚さ数cm以下の岩片を含む。岩片は新鮮な安山岩や玄武岩のほか、新第三系の変質したデイサイト、安山岩、玄武岩、凝灰岩を含む。黄瀬川火砕流堆積物の基質部分は、溶結部では、濃いこげ茶色（10YR2/2）を示す。非溶結部では薄いこげ茶色（10YR2/2）を示す。基質部分は、主に由来を発泡した褐色ガラスの破片からなる。基質部分の稜長は、極粗粒砂からシルトサイズまで含まれる。

岩の噴出年代を、約110～80万年前とおく（第2.2図）。

分布は、岩相の岩片から計算すると、約110～80万年前と推定できる（第2.2図）。

第5.22図 黄瀬川火砕流堆積物と八甲田第1期火砕流堆積物間の地層の柱状図

第5.21図の柱状図。
以降の逆磁極イベント（0.99 ～ 0.78 Ma）に対比できる可能性が高い。したがって、黄瀬川火砕流堆積物の発生年代は、約 100 ～ 80 万年前であると考えられる（第2.2 図）。

5.6.3 大小川沢土石流堆積物（Hso）

命名 この土石流堆積物は、宝田ほか（1998）を改称。宝田ほか（1998）は、主に大小川沢に沿って分布する多量の土石流堆積物を、大小川沢層と呼んだ。ここでは、堆積物の起源を明確にするため、大小川沢土石流堆積物と命名する。村岡・高倉（1988）は、大小川沢沿いの本堆積物を岩屑流堆積物と表現した。佐々木ほか（1998c）や藤原（2001MS）は、本堆積物の一部が岩屑なだれ堆積物であるとし、大小川沢岩屑なだれ堆積物と呼んだ。しかし、これに該当する堆積物の基質部分は、粘土サイズの粒子をほとんど含んでいない。これは、ラハールなどの水に飽和した流れの中で、粘土サイズ粒子が水によってより下流まで運ばれた可能性が高く、巨礫から粘土サイズ粒子まで含んでいる一般的な岩屑なだれ堆積物とは粒度組成が異なる。したがって、本堆積物は水が関与していた可能性が高いため、ここでは大小川沢土石流堆積物に含めた。

模式地 大小川沢林道標高 690 m 地点（N40° 36′ 5.8″, E140° 46′ 55.4″）。

層序関係 南八甲田第1ステージ溶岩・火砕岩を直接覆う。大小川沢上流部では、八甲田山第2期火砕流堆積物に直接覆われる。

分布・層厚 大小川沢流域、青荷川上流域、中野川中流域に広く分布。層厚は、最大で約 100 m 程度。

岩相 直径数 10 cm 以下の礫を含み、非常に淘汰が悪い（第 5.23 図 A）。大小川沢土石流堆積物は、数 10 枚以上のフローユニットからなる。1つのフローユニットの層厚は、数 10 cm ～ 数 m 程度で、礫種は、南八甲田第1ステージ溶岩・火砕岩起源の溶岩片が比較的多い。一部、熟水変質した新第三紀の安山岩片や玄武岩片を含む。スコリア、軽石、シルト片なども含んでいる。礫の円磨度は、亜円〜亜角である。直径10 cm以下の岩片を含む。基質部の淘汰は悪い。1フローユニットの層厚は、約 50 ～ 70 cm である。フローユニット内には逆磁極変化が見られることが多い。降下スコリアは、亜円〜亜角である。直径 10 cm 以下のスコリアからなり、礫支持で比較的淘汰が少ない。

これらのスコリア流堆積物や降下スコリア堆積物の存在

第 5.23 図 大小川沢土石流堆積物
A. 大小川沢林道標高 690 m 付近の露頭。層厚数 m の逆磁化した土石流堆積物が露出している。B. 青荷沢中流部標高 700 m 付近の露頭。大小川沢土石流堆積物中にはさまれるスコリア流堆積物。
は、大小川沢土石流が発生していた時期に、南八甲田火山からスコリア流や玄武岩溶岩を噴出すイベントを示す。佐藤（2001）は、大小川沢土石流の堆積物中、斜長石巨晶（直径4cm以下）を含む溶岩片が多く含まれている。また、直径10cm程度の火砕流堆積物が南八甲田火山からスコリア流や降下スコリアを噴出したことを示す。青荷沢上流付近（N40°35′32.6″, E140°47′12.7″）では、堆積物中に、斜長石巨晶（直径4cm以下）を含む溶岩片が多く含まれている。

大小川沢土石流堆積物の給源は、堆積物の分布から見て、現在の下岳、櫛ヶ峯、南沢岳、横岳に囲まれた地形的凹地の部分では、熱水変質作用が進んでいる。この変質による脆弱化によりこの地域がより浸食されやすくなり、不安定な部分が大雨の度にラハールとなって、西側の流域に流れ込んで堆積した可能性がある。大小川沢土石流堆積物の堆積年代は、80～50万年前ごろであると推定できる（第2.2図）。

地質時代
佐藤ほか（1998b）は、本堆積物中の岩塊から、0.54±0.11Maと0.43±0.15MaのK-Ar年代値を得ている。下位の南八甲田第1ステージ溶岩・火砕岩の噴出年代は、約110～80万年前である。したがって、大小川沢土石流堆積年代は、80～50万年前ごろであると推定できる（第2.2図）。

5.6.4 南八甲田第2ステージ溶岩・火砕岩（Hs2）
命名 新称、村岡・高倉（1988）の南八甲田第1期溶岩の一部に相当する。藤原（1998）は、本報告の南八甲田第2ステージ溶岩・火砕岩を更に細分し、下岳溶岩類、南沢岳溶岩類、横岳溶岩類、櫛ヶ峯溶岩類、猿倉沢溶岩類、黄瀬沼溶岩類、矢櫃沢溶岩類、榊ヶ瀬沢溶岩類、矢櫃岳溶岩類、雪岳溶岩類、赤倉岳溶岩類、赤倉岳起源の層厚5mの溶岩に分布する。

模式地 青荷川上流林道沿い。標高913.9m小ピークの南（N40°34′25.1″,E140°48′18.8″）。

層序関係 南八甲田第1ステージ溶岩・火砕岩の下位には、南八甲田第2期溶岩・火砕岩が覆われる。下岳溶岩類、南沢岳溶岩類、横岳溶岩類、矢櫃沢溶岩類、黄瀬沼溶岩類、猿倉沢溶岩類、黄瀬沼溶岩類、矢櫃沢溶岩類、赤倉岳起源の層厚5mの溶岩に分布する。

分布・層厚 八甲田カルデラ周辺に広く分布する。特
森溶岩, 新第三紀の地層, 流路にあった南八甲田火山噴出物起源であると考えられる。基質部には, 斜長石, 石英, 普通輝石, 紫蘇輝石, 角閃石, 磁鉄鉱の結晶片などが見られる。直径 3 mm 以下の石英が目立つ。ときおり両錐形の石英を含んでいる。斑晶量は上位の八甲田第 2 期火砕流堆積物に比べて少ない傾向がある（サンプルにメッシュを当てて測定したポイントカウントで約 25%以下）。基質の色は, 溶結部ではチョコレート色 (Brownish gray, 5YR 4/1) ‒ ねずみ色 (Medium dark gray, N4) を示す（第 5.25 図 A）。

に奥入瀬渓谷沿いでは, 最大厚 50 m 以下の数多くの溶結岩相が見られる。小幌内川の露頭（N40° 32′ 24.5″, E140° 57′ 42.2″）では, 八甲田第 1 期火砕流堆積物の厚層は, 30 ～ 40 m である。給源は, 本図幅北東部の八甲田カルデラである。

岩相 模式地では, 強溶結しており, 間隔 1 ～ 2 m 程度の垂直方向の冷却節理が発達している（第 5.24 図）。これらの冷却節理面をつなぐ10 ～ 30 cm 間隔の水平方向の冷却節理もよく発達している。溶結度は八甲田 1 期火砕流堆積物の方が, 八甲田第 2 期火砕流堆積物よりも高い傾向がある。上部と下部に数 m の非溶結部がある（第 5.21 図；第 5.22 図；第 5.28 図）。長径 30 cm 以下の軽石を含む（第 5.25 図）。溶結部の軽石は扁平化しており, 溶結レンズ化しているものもある。非溶結部では, 比較的多数の軽石を含んでおり, ときおり箱状軽石も含んでいる（第 5.25 図 B）。軽石の岩質は, 角閃石含有石英紫蘇輝石普通輝石デイサイトである。数 cm 以下の岩片を含む。岩片の種類は, 安山岩, 玄武岩, 凝灰岩などである。また, スコリア片を含む。変質した岩片や下位の虹彩凝灰岩の破片も含んでいる。岩片は, 主に黑森溶岩, 新第三紀の地層, 流路にあった南八甲田火山噴出物起源であると考えられる。基質部には, 斜長石, 石英, 普通輝石, 紫蘇輝石, 角閃石, 磁鉄鉱の結晶片などが見られる。直径 3 mm 以下の石英が目立つ。ときおり両錐形の石英を含んでいる。斑晶量は上位の八甲田第 2 期火砕流堆積物に比べて少ない傾向がある（サンプルにメッシュを当てて測定したポイントカウントで約 25%以下）。基質の色は, 溶結部ではチョコレート色 (Brownish gray, 5YR 4/1) ‒ ねずみ色 (Medium dark gray, N4) を示す（第 5.25 図 A）。

大幌内川取水口付近の露頭（N40° 32′ 37.0″, E140° 56′ 38.0″；第 5.26 図；第 5.27 図；第 5.28 図）では, 層厚 15 m の八甲田第 1 期火砕流堆積物が露出している。その上位には, 層厚 8 m の降下軽石堆積物やラハール堆積物を挟んで, 層厚 5 m の八甲田第 2 期火砕流堆積物, 層厚 5 m のラハール堆積物, 厚層 15 m の十和田八戊火砕流堆積物が観察できる。八甲田第 1 期火砕堆積物の直下には, 層厚 10 cm の白色的降下軽石堆積物がある（第 5.26 図）。その下位には, 層厚 50 cm の風成土壌を挟んで, 層厚 250 cm の降下軽石堆積物が露出している（第 5.27 図；第 5.28 図）。この降下軽石堆積物は, 直径 4 cm 以下の軽石を含む。
第5.26図 八甲田第1期火砕流堆積物下位の地層（その1）
大幌内川標高400 mの取水口付近の露頭。A.層厚2 mの黒雲母を含む降下軽石堆積物。上層
に八甲田第1期火砕流堆積物の下部（Ht1）が露出している。B.黒雲母を含む降下軽石堆積物の拡大写真。
石は、粘土化が進んでおり、白色（white, N9）〜淡黄色（yellowish grey, 5Y 8/1）の色を示す。また、灰色軽石（N6, N7）も含まれる。比較的新鮮な部分では、礫支
持であることが確認できる。基質部分には、極粗粒～中粒砂サイズの軽石片が多い。また、1 cm以下
の安山岩の岩片を含む。軽石は、直径2 mm以下の黒雲母を特徴的に含む。他に3 mm以下の石英、斜長石、2 mm以下の紫蘇輝石、普通輝石、磁鉄鉱を含む。八甲田火山群
や十和田火山起源の堆積物には、黒雲母を含む堆積物は存在しないことから、この層厚2 m以上の八甲田第1期火砕流堆積物の下位の降下軽石堆積物は、鍵層として有効である。この降下軽石堆積物は、他の八甲田第1期火砕流堆積物が露出している多くの地点で観察できる（第5.21図：第5.22図：第5.28図）。この降下軽石堆積物は、八甲田カルデラ形成前の先駆的火山活動によるプリニー式噴火堆積物である可能性がある。
この露頭では、黒雲母を含む降下軽石堆積物と新第三系の橋ヶ瀬沢安山岩との間に、層厚5〜70 cmの9枚の
降下軽石層と、層厚8〜45 cmの10枚以上の降下スコリア堆積物、層厚1〜15 cmの数枚の降下火山灰堆積物
が露出している（第5.27図：第5.28図）。これらの多数の降下火砕物は、主に南八甲田火山群の成長に伴って
噴出した堆積物であると考えられる。
小幌内川の露頭（N40°32′24.5″, E140°57′42.2″：第5.28図）では、八甲田第1期火砕流堆積物の大部分
が溶結している。溶結部では、軽石の直径は25 cm以下であり、大部分が10 cm以下である。軽石は灰色（N7）で、発泡度は低く、気泡のサイズは直径2 mm以下
であり、大部分が0.3 mm以下である。気泡は一方向に
伸びている。岩片の最大径は2 cm以下である。基底部
付近は非溶結である。基底部付近の軽石の最大径は4
cmで、岩片の最大径は1 cmである。軽石は灰色（N8）
が多く、発泡度は低い。気泡の直径は2 mm以下であ
る。ここでも、八甲田第1期火砕流堆積物の直下に層厚
8 cmの降下軽石層が見られる。軽石の最大径は5 cm。
岩片の最大径は1 cm、礫支持である。軽石の発泡度は比較的低く、気泡の直径は0.5 mm以下である。軽石はほとんどが灰色軽石（N7、一部N8）で、円磨度は亜円〜亜角程度である。軽石は斜長石、普通輝石、紫蘇輝石、磁鉄礦を含む。その下には、層厚13 cmの風成土壌を挟み、層厚30 cmの多くの円礫を含む降下軽石層の再堆積層が見られる。その下には層厚13 cmの降下軽石層が露出している。この降下軽石層は、大部分が白色軽石（N9）でできている。軽石の最大径は6 cm、岩片の最大径は7 cmである。軽石中には、斜長石、紫蘇輝石、普通輝石、磁鉄鉱が含まれている。岩片は、安山岩や変質した新第三紀の火山岩が多い。その下には15 cmの風成土壌を挟んで、鍵層となる黒雲母を含む層厚3.5 mの厚い降下軽石層が露出している。この降下軽石層
は、軽石の最大径が5cmで、岩片の最大径が1cmである。軽石は白色（N9）が多く、粘土化が進んだもののはやや黄色がかかった色（5Y 8/4）を示す。粘土化した軽石には、圧密によって扁平化しているものもある。軽石と軽石の間は、細粒の基質（10YR 5/4, 10YR 6/6）が埋めている。気泡はやや伸びている。気泡のサイズは2mm以下がほとんどである。軽石には普通輝石、紫蘇輝石、黑雲母、斜長石、磁鉄鉱が含まれている。

八甲田第1期火砕流堆積物は、本図幅内では主に溶結岩相を示す。しかし、本図幅北西隣の「青森西部」図幅内の鍋ヶ坂付近（八甲田カルデラの西北西27km地点）では、八甲田図幅内とは異なる岩相を示す非溶結堆積物が分布する（第5.29図）ので、ここでその岩相を紹介しておく。ここでは、浅海堆積物である大釈迦層（Nomura and Hatai, 1935：根本・千田, 1994）の上位に、層厚約10cm～1mの比較的薄い多数のフローユニットが存在する岩相（Ht1（L））と直徑1m以下の比較の大きい軽石を含むマッシブな岩相（Ht1（H））が露出している。多数のフローユニットが見られる岩相は、浅海に堆積した岩相であり、火砕流からの多数のフローユニットが明瞭に残っていると考えられる。一方、マッシブな岩相は、火砕流堆積物による埋め立てで陸化した後に堆積した岩相であると考えられる。このことは、熱残留磁化方位の測定結果からも支持される（佐々木, 1998MS, 2001）。

地質時代
村岡・高倉（1988）、Muraoka（1989MS）、村岡・長谷（1990）、村岡（1991a）は八甲田第1期火砕流堆積物の発生年代を、K-Ar年代の測定結果の平均値から0.65 Maとした。また、高島ほか（1990）は、0.53MaのTL年代値を示した。弘前市（2001）は、八甲田第1期火砕流堆積物について0.65 ± 0.16 MaのFT年代を報告した。

八甲田第1期火砕流堆積物の溶結部分について、3地点で2箇所ずつから定方位試料を探取した。測定場所は、焼山十和田湖温泉郷（N40°34′23.7″, E141°00′2.1″）、小幌内川道入り口付近（N40°32′57.8″, E140°58′26.8″）、小幌内川標高305m付近（N42°32′33.2″, E140°58′4.5″）の3地点である。磁化方位計（フラックスゲートFGM-3D1L, Walker Scientific Inc.)で、古地磁気の磁化方位を測定したところ、6試料すべて正帯磁であった。また、八甲田カルデラから西北西27kmにある鍋ヶ坂付近の非溶結岩相でも八甲田第1期火砕流堆積物はすべて正帯磁を示す（佐々木, 1998MS, 2001）。
この結果は、Muraoka（1989MS）、村岡・長谷（1990）、植木・鈴木（2002a,b）、鈴木・植木（2002b）が示した磁化方位と一致している。したがって、八甲田第1期火砕流堆積物の発生年代は、ブリュヌ正磁極期（0.78Ma以降）にある。八甲田第1期火砕流堆積物の岩相、八甲田第2期火砕流堆積物に比べて、古地磁気の強度が強い傾向がある。
最近、鈴木ほか（1998, 2001a,b）、鈴木・植木（2002a）は、八甲田第1期火砕流に伴う広域火山灰が、これまで秋田県男鹿半島、千葉県房総半島、大阪平野で見つかったブリュヌ・松山クロン境界直上にあるテフラ（OT 21テフラ、国本1テフラ、今熊Iテフラ）と対比できることを示した。彼らはゼータ較正により比較的信頼性の高いFT年代を求め、国本1テフラの年代値が0.70 ± 0.25 Maであったことを示した。
水垣・宝田（2003）は、電子スピン共鳴（ESR）年代測定を行った。八甲田第1期火砕流堆積物から3試料、八甲田第1期火砕流堆積物から3試料のサンプルを探取し、石英粒子を抽出したのち、1試料につき4～6本の試料管を作成しガンマ線を照射して測定を行った。いずれの試料でもAl中心信号とTi中心信号が検出され、その結果から計算した年代値を第5.2表に示した。Al中心年代とTi中心年代は、Al及びTiがSiを置換する結晶格子欠陥にトラップされた電子数から算出した放射年代値である（池谷, 1987；Ikeya, 1993；Rink, 1997）。
水垣（2002）によれば、石英斑晶のESR年代をK-Ar年代、FT年代と比較すると、Al中心年代は系続的に若
く、Ti 中心年代は同程度-古めに出る傾向が認められた。このことから、真の年代はAl 中心年代とTi 中心年代の間でTi 中心年代に近いと考えることができる。したがって、八甲田第1期火砕流堆積物について0.7～0.6 Ma、八甲田第2期火砕流堆積物について0.4～0.3 Maの年代値となった。この年代値は、村岡（1991a）のK–Ar年代値とほぼ一致する。

以上の年代値から、TL年代値がやや若い年代値を示す傾向があることを考慮して、本報告では、八甲田第1期火砕流堆積物の噴出年代を0.7～0.6 Ma（平均0.65 Ma）としておく（第2.2図）。

5. 6. 6 蔦川火砕堆積物（Htp）

命名 新称。八甲田第1期火砕流堆積物と八甲田第2期火砕流堆積物の間に見られる湖成堆積物、降下軽石、小規模火砕流堆積物、ラハール堆積物などの総称である。

模式地 蔦川発電所の北西500 m地点。

層序関係 模式地では、八甲田第1期火砕流堆積物と八甲田第2期火砕流堆積物の間に下位から順に、湖成堆積物、降下軽石、小規模火砕流堆積物、降下テフラ層が露出している（第5.30図）。

分布層厚 場所によって変化するが、層厚は約10～15 m以下である。図幅南東部の方が、比較的厚い傾向がある。模式地での湖成堆積物の層厚は3 m、降下軽石の層厚は約4 m、小規模火砕流堆積物の層厚は3 m、降下テフラ層の層厚は約2 mである。

岩相 湖成堆積物は、シルト-細粒砂を主体とする。

降下軽石は、直径数cm以下の軽石が主体であり、淘汰性が小規模火砕流堆積物は、直径15 cm以下の軽石を含む軽石凝灰岩であり、淘汰性がよい。小規模火砕流堆積物は局所的に分布することから、比較的細粒の降下スコリア層を主体とし、降下軽石層を伴う。

模式地での湖成堆積物、降下軽石、火砕流堆積物、再堆積層などが見られる（第5.30図）。Ht1 と Ht2 の間に、層厚 330 cmの降下軽石層が存在する。この厚い降下軽石層は、蔦川に露出する層厚4 mの降下軽石層（第5.30図）に対比できる。この降下軽石層とHt2の間には、上位から層厚160 cmのラハール堆積物、層厚60 cmの小規模火砕流堆積物、層厚50 cmの降下軽石堆積物が挟まっている。層厚330 cmの降下軽石層の軽石の最大径は10 cmで、岩片の最大径は2.5 cmである。礫支持である。一部白色軽石（N9）が見られる。岩片は、安山岩、玄武岩であり、一部変質した岩片を含む。円磨度は角-亜角礫である。軽石の発泡度は低く、直径1～3mm以下の気泡が見られる。直径1 mm以下の斜長石、紫蘇輝石、普通輝石、磁鉄鉱を含む。軽石の粒間に、酸化鉄（SYR 3/4, 5YR 4/4, 5YR 5/6）や酸化マンガン（N1, SYR 2/1）の沈積が見られる。下位下部には厚さ5 cm以下の黒色土壌を挟む。

地質時代 八甲田第1期火砕流堆積物（0.7～0.6 Ma）
から八甲田第２期火砕流堆積物（0.4 ~ 0.3 Ma）の間の約30万年に断続的に堆積した堆積物である。

5.6.7 南八甲田第3ステージ溶岩・火砕岩（H3）

命名 新称。大部分が村岡・高倉（1988）の南八甲田第2期溶岩に相当するが、乗鞍岳山頂付近や猿倉岳山頂付近などの分布が彼らの定義とは異なる。彼らは、赤倉岳頂部の北や、赤倉岳馬蹄形崩壊地形の内部にも本溶岩の分布を示していたが、空中写真判読及び現地調査から、その付近の溶岩はより古い溶岩であると判断した。また、本報告では、乗鞍岳の山頂付近の溶岩を、地形解析の程度の違いから南八甲田第3ステージ溶岩・火砕岩に含めた。藤原（2001MS）は、南八甲田第3ステージ溶岩・火砕岩を、地域ごとに更に細分し、猿倉岳溶岩、乗鞍岳溶岩、南赤倉岳溶岩、葛川沿いに区分している。

模式地 猿倉岳山頂付近（N40°36′40.8″, E140°53′26.9″）。

層序関係 空中写真判読から、南八甲田第2ステージ溶岩・火砕岩を覆う。また、駒ヶ峯溶岩に覆われる。猿倉温泉東部の葛川上流部では、八甲田第1期火砕流堆積物を直接覆う。

分布・層厚 乗鞍岳上部、南八甲田赤倉岳山頂部及び南斜面、猿倉岳山頂部及び北斜面、猿倉岳西部及びその北斜面、猿倉温泉南東部の尾根上、大川原北東部などに分布する。層厚は、約150 m以下である。

岩相 乗鞍岳山頂部南西付近では厚さ5 m以上のアリ溶岩流が露出している。乗鞍岳、猿倉岳、赤倉岳山頂付近や、猿倉岳北斜面、荒川沿いの露頭でも溶岩の露出が見られる。乗鞍岳山頂付近では、アリ溶岩も露出している。岩質は、かんらん石含有紫蘇輝石普通輝石玄武岩及び玄武岩質安山岩である。

地質時代 0.45 ± 0.48 Ma, 0.28 ± 0.33 Ma, 0.30 ± 0.12 Ma, 0.39 ± 0.15 Ma, 0.33 ± 0.07 Ma, 0.42 ± 0.09 MaのK‒Ar年代が報告されている（新エネルギー総合開発機構, 1987）。したがって、南八甲田第3ステージ溶岩・火砕岩は、約50 ~ 30万年前に噴出したと推定で
分布・層厚 八甲田カルデラ周辺に広く分布する。標高650 mから100 mのなだらかな火砕流台地地形を形成する。本図幅東部で約500～600 m、図幅南東部で約500 m、図幅北西部で650～750 m、図幅西部付近では750～900 mの火砕流台地を形成する。層厚は厚いところで100 mに達する。分布面積は512 km²であり、平均層厚を約70 mとすると、総体積は約36 km³となる（村岡・長谷、1990）。

岩相 弱溶結している。軽石の含有量が第1期火砕流堆積物に比べて少ない傾向がある。基底部付近では、非溶結部が見られる。比較的脆弱であり、わずかに柱状節理が発達する（第5.30図A、B）。一方、八甲田第1期火砕流堆積物の場合は溶結部分の溶結度が高く、柱状節理がよく発達しているので、識別に使える。基質の色は、灰色（Medium light gray, N6—Medium gray, N5）を示す。また、比較的上部付近では、基質はやや赤みがかった色（Pinkish gray, 5YR 8/1；Grayish orange pink, 10R 8/2；Pale red, 5R 6/2）を示す。基質には、火砕流堆積物全岩で30～50%程度の多量の斑晶鉱物が含まれている。斑晶鉱物は斜長石、石英、紫蘇輝石、普通輝石、磁鉄鉱、角閃石である。軽石の岩質は、角閃石含有石英紫蘇輝石普通輝石ダイサイトである。斜長石と石英の直径は最大約4 mmであり、よく目立つ。石英は融食形を示すことが多い。また両錐形石英も見られる。八甲田第1期火砕流堆積物中の斑晶鉱物含有量は火砕流堆積物全岩での約25%以下であり、斑晶量の差で区別することが可能である（村岡・長谷、1990）。

軽石はよく扁平化している。軽石の色は、灰色（Very light gray, N8—Light gray, N7）から、やや紫がかった灰色（Grayish blue, 5PB 4/2）を示す。小幌内川沿いの林道の露頭（第5.31図）では、直径20 cmの木がいくつか見られる。最下部に、厚さ2.5 cmの中粒砂～シルトサイズの灰色降下火山灰層が存在する。この火山灰層の色は、N4～N5を示す。先駆的なマグマ水蒸気爆発の活動があった可能性がある。

5.6.8 八甲田第2期火砕流堆積物（Ht2）
命名 村岡・高倉（1988）。詳細は、八甲田第1期火砕流堆積物の項を参照。
模式地 北股川林道（N40°39′35.9″, E140°59′59.2″）。
層序関係 本図幅南東部、北西部では、八甲田第1期火砕流堆積物との間に、層厚約15 m以下の湖成堆積物、降下軽石、小規模火砕流堆積物、降下テフラ層などからなる篠川火砕堆積物が挟まれている。また、上位には、ラハール堆積物、十和田八戸火砕流堆積物、十和田中層下軽石などが見られる。

地質時代 西村ほか（1977）は、八甲田火砕流堆積物
について2.0 Ma, 2.1 MaのFT年代を示した。しかし、この時代は下位の青荷凝灰岩の年代値（1.7～1.1 Ma: 5. 2. 1 青荷凝灰岩）よりも古く矛盾している。その後、村岡・高倉（1988）、Muraoka（1989MS）、村岡・長谷（1990）、村岡（1991a）は、K‒Ar年代測定値の平均から0.40 Maを示した。高島ほか（1990）は、0.25 MaのTL年代値を示した。新エネルギー・産業技術総合開発機構（1993）は、0.41±0.06 MaのFT年代値を報告した。弘前市（2001）は、0.37±0.08 MaのFT年代値を報告した。

八甲田第2期火砕流堆積物の溶結部分について、2地点で2箇所ずつから定方位試料を採取した。測定場所は、北殿沢林道入り口（N40°39′35.9″, E140°59′59.2″）、十和田図幅内の焼山十和田湖温泉郷かなぼ北側の道路ぞい（N40°34′48.0″, E141°00′17.3″）の2地点である。磁化方位計（フラックスゲートFGM‒3DIL, WalkerScientificInc.）で、古地磁気の磁化方位を測定したところ、4試料すべて正帯磁であった。この結果は、Muraoka（1989MS）、村岡・長谷（1990）が示した磁化方位と一致している。したがって、八甲田第2期火砕流堆積物の発生年代は、ブリストル正磁極期（0.78～0.0 Ma）にあたる。八甲田第2期火砕流堆積物の方が、八甲田第1期火砕流堆積物に比べて、古地磁気の強度は弱い傾向がある。

水垣・宝田（2003）は、電子スピニ共鳴（ESR）年代測定を行い、八甲田第2期火砕流堆積物について0.4～0.3 Maの年代値を報告している（第5.2表）。

以上の年代値から、TL年代値はやや若い年代値を示す傾向があることも考慮して、本報告では、八甲田第2期火砕流堆積物の発生年代を0.4～0.3 Ma（平均0.35 Ma）としておく（第2.2図）。

5. 6. 9 黄金平溶岩
命名：村岡・高倉（1988）。
模式地：黄瀬川上流の林道沿い（標高720～740 m付近）。
層序関係：八甲田第2期火砕流堆積物を覆う。十和田火砕流堆積物及び十和田中掫軽石に覆われる。空中写真判読から、本溶岩は乗鞍岳南斜面の南八甲田第2ステージ溶岩・火砕岩を覆う。
分布・層厚：模式地周辺と檜ヶ瀬沢沿いに分布する。層厚は、全体で10～20 m程度である。
岩相：クリンカーを伴う数枚以上のアラ溶岩流れ、1枚のアラ溶岩流れの厚さは、約数m～10 mである。
岩質：かんらん石紫蘇輝石普通輝石玄武岩質安山岩である。
地質時代：八甲田第2期火砕流堆積物（0.4～0.3 Ma）を覆うことから、南八甲田火山群でも最新期の溶岩にあたる。新エネルギー総合開発機構（1987）は、0.29±0.26 MaのK‒Ar年代値を報告している。本報告では、黄金平溶岩の噴出年代を約30万年前としておく（第2.2図）。

5. 6. 10 駒ヶ峯溶岩（Hsl）, 駒ヶ峯火砕岩（Hsb）
命名：駒ヶ峯溶岩は南部・谷田（1961）が命名。駒ヶ峰火砕岩は新称である。南部・谷田（1961）は、山頂付近のディサイト溶岩（KM‒3）と、集塊岩を伴うかんらん石普通輝石紫蘇輝石安山岩（KM‒1）の溶岩でできているとしたが、本報告の駒ヶ峰溶岩・駒ヶ峰火砕岩とは、分布域が大きく異なる。村岡・高倉（1988）でも、本溶岩を駒ヶ峯溶岩と呼称している。藤原（2001MS）は、駒ヶ峰周辺に分布する溶岩や火砕岩を駒ヶ峰溶岩類としている。村岡・高倉（1988）は、駒ヶ峰周辺にも本溶岩類の分布を示したが、本図幅調査では確認できなかった。
かったため示していない。

模式地 駒ヶ峰溶岩の模式地は、駒ヶ峰山頂付近（N 40° 36′ 25.8″, E140° 52′ 12.2″）である。駒ヶ峰火砕岩の模式地は、駒ヶ峯南東登山道沿い（N40° 36′ 17.1″, E140° 52′ 28.4″）である。

層序関係 空中写真判読から、本溶岩・火砕岩は、南八甲田第 1 ステージ溶岩・火砕岩及び南八甲田第 2 ステージ溶岩・火砕岩を覆う。また、空中写真では、他の溶岩・火砕岩に比べて、浸食の度合いが低くもっとも新しい地形を示す。このことから、南八甲田火山喷出物では最新の噴出物であると考えられる。

分布・層厚 駒ヶ峰溶岩は、駒ヶ峯のピークを含む、周辺の平坦面から突出した地形を構成している。全体の層厚は、約 50 ~ 100 m である。駒ヶ峯火砕岩は、駒ヶ峯南東の登山道沿いに分布する。層厚は、約 5 ~ 10 m である。

岩相 駒ヶ峰溶岩は、溶岩流、溶岩ドームからなる。駒ヶ峰山頂付近や駒ヶ峰南斜面の登山道沿いなどにマッシブ溶岩や溶岩塊として露出する。空中写真判読では、駒ヶ峯南部に 3 つの溶岩流のローブ地形が観察できる。駒ヶ峰火砕岩は、主に単一岩種の灰色〜白色の発泡度の低い亜角の岩塊、火山礁、砂からなる。一部発泡度の低い直径 5 cm 以上のスコーリ亜を含む。これは、岩塊火山灰流堆積物である可能性がある。岩質は、石英普通輝石紫蘇輝石デイサイトである。他の南八甲田火山群の岩石とは化学組成が大きく異なる（藤原、2001MS）。

地質時代 0.32 ± 0.09 Ma の K‒Ar 年代が報告されている（新エネルギー総合開発機構、1987）。したがって、八甲田第 2 期火砕流堆積物と同時期もしくはより新しい噴出物である可能性が高い。本報告では、K‒Ar 年代値から、駒ヶ峰溶岩・火砕岩の噴出年代を、約 30 万年前としておく（第 2.2 図）。

5. 6. 11 鳥岩屑なだれ堆積物（Hsd）

命名 新称。村岡・高倉（1988）の岩屑流堆積岩、藤原（2001MS）の南赤倉岳岩屑なだれ堆積物に相当する。

模式地 蔦川水力発電所西 250 m 地点（N40° 36′ 2.6″, E140° 57′ 33.7″）。

層序関係 模式地で、層厚 6 m 以上の八甲田第 1 期火砕流堆積物を覆う。また、蔦温泉付近では、部分的に十和田八戸火砕流堆積物に覆われる。

分布・層厚 赤倉岳の東部には、南北 0.8 km 以下、東西約 1.3 km の馬蹄形崩壊地形が見られる（第 5.33 図 A）。鳥岩屑なだれ堆積物は、この馬蹄形崩壊地形の内部から蔦川までの範囲の赤倉岳東山麓に広く分布する。分布面積は 7 × 10^6 m² である。平均厚を約 10 〜 50 m としたとき、総体積は、約 10^7 〜 10^8 m³ のオーダーとなる。分布域では流れ山地形が多数見られる。

岩相 鳥岩屑なだれ堆積物は、岩屑なだれ岩塊と岩屑なだれ基質の二つからなる。

地質時代 八甲田第 2 期火砕流堆積物を母材に含むことから、鳥岩屑なだれ堆積物は、南赤倉岳東部の馬蹄形崩壊地形、湯ノ台より撮影。B. 岩屑なだれ岩塊中に見られるジグソー割れ目（赤沼付近）。C. 岩屑なだれ基質（蔦川沿い標高 470 m 付近）
とから、少なくとも発生年代は約 40 ~ 30 万年前以降であるといえる。発生年代は、約 30 ~ 10 万年前と考えられる（第 2.2 図）。しかし、流れ山地形が比較的よく保存されていることなどから、数万年前の可能性も考えられる。

5.7 北八甲田火山群

5.7.1 田代平湖成層（Lt）

命名 村岡・高倉（1988）。南部・谷田（1961）により、湖水堆積物と記載されたもので、彼らは、本層がカルデラ陥没後に堆積した湖成層であると指摘した。

模式地 警込川（N40° 39′ 49.6″, E140° 57′ 34.2″）（青森東部図区地域内）。

層序関係 本層中に、八甲田火山群赤倉岳火山起源の赤倉岳岩屑堆積物（北隣の「青森東部図幅」内に分布、工藤ほか、2004）が挟まれている。また、和田八戸火砕流堆積物に覆われる。本層の基底部は露出していない。

分布・層厚 八甲田カルデラ内の田代平に広く分布する。層厚は基底部が露出していないため不明であるが、100 ~ 200 m 以上ある可能性が高い。

岩相 シルト層を主体とする。シルト層中には、数 cm 大の新第三系の変質した溶岩や凝灰岩などの岩片も含むことが多い。これらはカルデラ壁を構成する地層に由来する可能性が高い。また、厚数 m の土石流堆積物もしばしば見られる。シルト層の間に、厚数 10 cm 以下の降下スコリア堆積物が挟まれることが多い。これらは、層厚数 m の堆積物であると考えられる。赤倉岳起源の岩屑堆積物と同様に、赤倉岳火山の噴出物と推定される。赤倉岳の火砕流堆積物は、八甲田カルデラ内に成長しており、八甲田第 2 期火砕流堆積物（0.4 ~ 0.3 Ma；平均 0.35 Ma）よりも新しいと考えられる。したがって、本層は、赤倉岳火山の火砕流堆積物と同様に、K–Ar 年代値から推定される。

地質時代 八甲田第 2 期火砕流の噴出（0.3 ~ 0.4 Ma）以降。北八甲田火山群の活動時代に堆積した。赤倉岳火山の活動時代は、八甲田第 2 期火砕流の噴出（0.4 ~ 0.3 Ma）と同様に、K–Ar 年代値から推定される。

5.7.2 雫岳溶岩・火砕岩（Hh）

命名 工藤ほか（2004）。南部・谷田（1961）は、雫岳火山の活動によって形成されたもので、彼らは、本層がカルデラ陥没後に堆積した湖成層であると指摘した。

模式地 雫岳北登山道沿い（N40° 39′ 56.2″, E140° 55′ 46.1″）。

地質時代 八甲田第 2 期火砕流の噴出（0.3 ~ 0.4 Ma）以降。北八甲田火山群の活動時代に堆積した。赤倉岳火山の活動時代は、八甲田第 2 期火砕流の噴出（0.4 ~ 0.3 Ma）と同様に、K–Ar 年代値から推定される。

5.7.3 高田大岳溶岩・火砕岩（Htd）

命名 南部・谷田（1961）。南部・谷田（1961）は、高田大岳を構成する溶岩を 3 つに区分开けた。村岡・高倉（1988）は、地形的区分にもとづいて、高田大岳火山の活動時代は、八甲田第 2 期火砕流の噴出（0.4 ~ 0.3 Ma）と同様に、K–Ar 年代値から推定される。

分布・層厚 標高 1,552 m の高田大岳を構成する。標高 1,240 m の雫岳を構成する。高田大岳は、直径 3 km ほどの成層火山で、基盤からの比高は、約 600 ~ 700 m であると推定できる。

岩相 アア溶岩・火砕岩（Hh）を主体とする。アア溶岩流や降下スコリア堆積物からなる。高田大岳は、八甲田カルデラ内に成長しており、八甲田第 2 期火砕流の噴出（0.4 ~ 0.3 Ma）と同様に、K–Ar 年代値から推定される。

地質時代 八甲田第 2 期火砕流の噴出（0.3 ~ 0.4 Ma）以降。北八甲田火山群の活動時代に堆積した。赤倉岳火山の活動時代は、八甲田第 2 期火砕流の噴出（0.4 ~ 0.3 Ma）と同様に、K–Ar 年代値から推定される。
岩質安山岩である。SiO2の含有量は、50～54 wt.%（Murakka, 1989MS；工藤, 1999MS）である。

地質時代 0.17 ± 0.37 Ma, 0.60 ± 0.60 Ma, 0.43 ± 0.08 Ma, 0.68 ± 0.39 Ma（新エネルギー総合開発機構, 1987）のK-Ar年代値が報告されている。高田大岳溶岩・火砕砕は、八甲田第2期火砕流堆積物（0.4～0.3 Ma）よりも新しく、雛岳溶岩・火砕砕（0.4～0.25 Ma）を覆う。したがって、噴出年代は、K-Ar年代値などから、0.4～0.2 Ma以前である可能性が高い（第2.2図）。

工藤ほか（2004）は、新エネルギー総合開発機構（1987）の年代値のうち、測定誤差の少ない0.43 ± 0.08 Maの値や周囲の火山体の噴出年代との関係から、高田大岳火山の主要活動期間は、40～30万年前ごろであり、少なくとも約20万年前までは活動を終了したと考えている。

5.7.4 田茂萢岳溶岩（Hm）
命名 村岡・高倉（1988）。
模式地「青森東部」図幅内、田茂萢岳山頂付近（N40°40′10.5″, E140°52′4.1″）。
層序関係「青森東部」図幅内の八甲田ロープウェイ山麓駅付近（N40°40′30.3″, E140°50′2.1″）では、田茂萢岳溶岩が寒水沢火砕流堆積物（工藤ほか, 2004）を覆う。空中写真判読によれば、田茂萢岳溶岩は北隣の前嶽溶岩類（工藤ほか, 2004）に覆われる。
分布・層厚 田茂萢岳（標高1,324m）を構成する比高約600mの成層火山。
岩相 溶岩流、溶岩ドームからなる。空中写真判読から、本図幅の北、「青森東部」図幅南にある田茂萢岳山頂付近の2つのピークは溶岩ドームである可能性が高い。八甲田山ロープウェイ山麓駅付近では、明瞭な溶岩流末端崖が確認できる。岩質は、石英かんらん石普通輝石紫蘇輝石安山岩である。SiO2の含有量は、59～63 wt.%である（工藤, 1999MS）。

地質時代 0.21 ± 0.14 Ma, 0.14 ± 0.05 Ma, 0.23 ± 0.06 MaのK-Ar年代値が報告されている（新エネルギー総合開発機構, 1987）。工藤ほか（1999MS）は、田茂萢岳溶岩を田茂萢岳溶岩類と呼んだ。工藤ほか（2004）は、田茂萢岳溶岩が八甲田第2期火砕流堆積物の噴出年代（0.4～0.3 Ma）よりも新しく、田茂萢岳溶岩を後カルデラ火山と呼む。工藤ほか（2004）は、田茂萢岳溶岩のK-Ar年代値は、八甲田第2期火砕流堆積物の噴出年代（0.4～0.3 Ma）よりも新しく、田茂萢岳溶岩を後カルデラ火山と呼んだ。工藤ほか（2004）は、田茂萢岳溶岩のK-Ar年代値が、田茂萢岳溶岩が約40～20万年前の間に先駆的な小規模活動を行い、大部分が30～15万年前に形成された可能性がある。本報告では、田茂萢岳溶岩のK-Ar年代値を考慮して、田茂萢岳溶岩を40～15万年前としておく（第2.2図）。

5.7.5 仙人岱溶岩・火砕砕（Hs）
命名 工藤ほか（2004）。
模式地 酸ヶ湯から大岳への登山道沿い（1,180m付近；N40°38′56.6″, E140°52′29.0″）。
層序関係 空中写真判読によれば、本溶岩・火砕砕は、南側の硫黄岳溶岩、東側の小岳溶岩、北側の大岳第3ステージ溶岩を覆われる。
分布・層厚 大岳と硫黄岳に挟まれた鞍部周辺に分布し、標高1,338mの名無山を構成する。層厚は500m以上である可能性が高い。

岩相 仙人岱溶岩は、主要に10数枚以上のアア溶岩流からなる。登山道沿い標高1,200m付近（N40°38′56.3″, E140°52′32.0″）では、熱水変質が進んだ地域がある。比較的豊かな噴気変質が進んだ溶岩が5枚以上露出している（第5.3図A）。模式地では、1枚の層厚2～5mの噴気変質の進んだ溶岩が5枚以上露出している（第5.3図B）。

仙人岱溶岩については、適切なK-Ar年代値が存在しない。約25～10万年前に活動した硫黄岳溶岩や小岳溶岩に覆われることから、本報告では、仙人岱溶岩・火砕砕の活動年代を約35～15万年前としておく（第2.2図）。

5.7.6 硫黄岳溶岩（Hi）
命名 南部・谷田（1961）。南部・谷田（1961）は、硫黄岳及びその周辺に分布する溶岩類を、硫黄岳溶岩類と呼んだ。工藤ほか（2004）は、本溶岩を更に、硫黄岳の中心火山体を構成する硫黄岳溶岩類、南西部の逆岳溶岩と南東部の涸沢溶岩に区分している。ここでは、硫黄岳溶岩としてまとめて取り扱う。

分布・層厚 硫黄岳（標高1,360m）付近の成層火山体を構成し、厚い溶岩流が、南西・南東方向に分布する。
第5.34図 仙人岱溶岩及び仙人岱火砕岩

A. 標高1,338 mの毛無山北西斜面に見られる板状節理の発達した溶岩
B. 酢ヶ湯から仙人岱ヒュッテに至る登山道沿い標高1,050 m付近から見た模式地のアア溶岩流。熱水変質が進んでいる。
C. 酢ヶ湯から仙人岱ヒュッテに至る登山道沿い標高1,180 m付近の露頭で観察できる水冷破砕による角礫岩相。
D. 冷却節理が発達した溶岩岩塊。

も。全層厚は少なくとも100 m以上ある可能性が高い。硫黄岳の南にある中新統板留層のデイサイト溶岩でできた石倉岳をよけるように溶岩流が分布している。

岩相 全体で数枚以上のアア～ブロック溶岩流からなる。1枚の溶岩流の厚さは10数m～数10 m程度である。模式地では、クリンカーを伴う溶岩流が露出している。硫黄岳頂付近は地形からの火砕岩を伴う可能性が高い。岩質は、石英かんらん石含有普通輝石紫蘇輝石安山岩である。SiO₂の含有量は、58～59 wt.％である（Muraoka, 1989MS; 工藤, 1999MS）。

地質時代 0.19 ± 0.07 MaのK‒Ar年代が報告されている（新エネルギー総合開発機構, 1987）。工藤ほか（2004）は、K‒Ar年代値などで硫黄岳の活動年代を30～10万年前と推定している。本報告では、K‒Ar年代値や溶岩の分布状況などを考慮し、硫黄岳の活動年代を約25～10万年前としておく（第2.2図）。

5.7.7 小岳溶岩（HK）

命名 南部・谷田（1961）は、小岳とその周辺に分布する溶岩を、小岳溶岩と呼んだ。その後、村岡・高倉（1988）は、小岳から南方に伸びる溶岩ロープも小岳溶岩に含めている。工藤ほか（2004）は、小岳溶岩の分布を見直して再定義した。

模式地 小岳頂付近 (N40° 39′ 1.1″, E140° 53′ 31.0″)。

層序関係 小岳溶岩は、空中写真判読によれば、仙人岱溶岩、硫黄岳溶岩、高田大岳溶岩を覆う。また、大岳第3ステージ溶岩に覆われる。

分布・層厚 小岳（標高1,478 m）を構成する溶岩、また、比較的厚い溶岩流が山頂から南方へ約2 km流れている。小岳頂付近や小岳西斜面、小岳・高田大岳の鞍部付近で、小岳溶岩が露出している。

岩相 小岳溶岩は、山頂付近の溶岩ドームと、ブロック溶岩流からなる。小岳頂付近は、地形から溶岩ドームである可能性が高い。各溶岩流の厚さは、数m～数10 mである。岩質は、かんらん石紫蘇輝石普通輝石安山岩である。岩石のSiO₂含有量は、約58 wt.％である（Muraoka, 1989MS; 工藤, 1999MS）。

地質時代 0.21 ± 0.08 MaのK‒Ar年代が報告されている（新エネルギー総合開発機構, 1987）。工藤ほか
（2004）は、小岳溶岩の噴出年代を、約30～10万年前と推定している。本報告では、K–Ar年代値や溶岩流の分布状況などから小岳の噴出年代を、約25～10万年前としておく（第2.2図）。

5.7.8井戸岳溶岩（Hdl）、井戸岳火砕岩（Hdb）
命名南部・谷田（1961）と村岡・高倉（1988）は、井戸岳とその周辺に分布する溶岩を、井戸岳溶岩と呼んだ。工藤ほか（2004）は、井戸岳噴出物を、井戸岳溶岩類、井戸岳山頂溶岩ドーム、井戸岳山頂爆発角礫岩、避難小屋降下スコリアに区分した。ここでは、井戸岳噴出物を、井戸岳溶岩、井戸岳火砕岩に区分した。工藤ほか（2004）の井戸岳山頂溶岩ドームは、井戸岳溶岩として一括した。また、避難小屋降下スコリアは、分布が限られることから地質図には示さなかった。

模式地井戸岳山頂火口東側火口縁（N40°39′45.0″，E140°53′4.5″）。

層序関係空中写真判読によれば、井戸岳溶岩は、南方の大岳溶岩と大岳火砕岩に覆われる。

分布・層厚井戸岳溶岩は、井戸岳山頂付近の溶岩ドームと周辺部に分布する溶岩流からなる。井戸岳の山頂部には直径約250m、深さ40～50mの爆裂火口が存在する（第5.35図A）。火口壁には、北西、南東、南方に平面直径100～150m程度、層厚20～50mの溶岩ドームの断面が露出している（第5.36図A）。この溶岩ドームの分布は、爆裂火口形成前に井戸岳山頂付近に数個の溶岩ドームが存在していた可能性が高いことを示している。また、溶岩流が山頂から少なくとも西方に1.2km、東方に1kmの地点まで分布していることが地形から確認できるが、良好な露頭を見つかっていない。

井戸岳火砕岩は、井戸岳火口縁付近に分布する。模式地では、層厚10m以下の井戸岳火砕岩が分布している（第5.37図A）。その下位には、井戸岳溶岩が露出している。周囲の井戸岳溶岩の層厚は少なくとも50m以上ある可能性が高い。また、井戸岳南斜面下部と、井戸岳と大岳の間の鞍部周辺には、層厚20～30cm程度、降下スコリア堆積物が分布している（工藤ほか、2004の避難小屋降下スコリア地質図上には示していない）。この降下スコリア堆積物は、分布からすると、井戸岳南部斜面にある直径150mの火口（第5.35図B）から噴出した可能性が高い。

岩相井戸岳溶岩の溶岩ドーム部分は、基底部付近に、縞状の流理構造が発達している（第5.36図B）。縞状部分は、15cm以下の致密な層と、10cm以下のやや発泡したガラス質な層が互層している。この縞状流理構造は、火口から溶岩が地表面に流れ出した際に、基底部に剪断応力が働いて形成された可能性が高い。井戸岳溶岩ドームの岩質は、かんらん石含有石英紫蘇輝石普通輝石安山岩である。SiO2含有量は、60～62wt.%である（Muraoka, 1989MS；工藤, 1999MS）。

井戸岳火砕岩は、角礫岩−凝灰角礫岩でできた層厚20～50cmの複数の層からなる（第5.37図B）。角礫の最大径は約4mである。数10cm大の角礫が多い。角礫の円磨度は、角（angular）−亜角（subangular）が大部分である（第5.37図A）。基質部分は、ラピリ−砂サイズで、山頂火口壁に露出する井戸岳溶岩と同質の岩石からなる。全体が熱水変質によって、膠結している。しかし、角礫の内部は比較的新鮮である。産状から、井戸岳角礫岩は、井戸岳爆裂火口で発生した複数回の水蒸気爆発によって形成された可能性が高い。爆裂火口の東側の火口縁のみに分布することから、水蒸気爆発は東方に指向性をもって発生した可能性が高い。井戸岳火砕岩の岩質は、かんらん石含有石英普通輝石紫蘇輝石安山岩である。SiO2の含有量は、61wt.%である（工藤, 1999MS）。

井戸岳と大岳の間の鞍部に分布する降下スコリアの層厚は、最大数10cm程度である。スコリアの最大径は、約50cmである。スコリアの発泡度は比較的乏しい。緻密なパン皮状火山弾も見られる。スコリアは、直径数10cm以下の白色の軽石質塊物を含む。縞状スコリアも多数含まれている。スコリアの岩質は、かんらん石紫蘇輝石普通輝石安山岩である。SiO2含有量は、60～62wt.%である（第5.37図B）。

第5.35図井戸岳
A. 赤倉岳から見た井戸岳山頂火口。後方は大岳の山頂部。B. 大岳北斜面の登山道から見た井戸岳山頂南部の火口。
蘇輝石普通輝石安山岩である。SiO₂の含有量は、57 wt.％である（工藤、1999MS）。

地質時代 溶岩ドームから0.07 ± 0.12 MaのK–Ar年代が報告されている（新エネルギー総合開発機構、1987）。工藤ほか（2004）は、周囲の火山体との層序と活動年代などから、井戸岳の活動年代を約20万年前に推定し、約10万年前に主要な山体を形成する活動を行っていたと推定した。本報告でも、K–Ar年代値などから、井戸岳の活動年代を、約20～10万年前としておく（第2.2図）。

5. 7. 9 赤倉岳溶岩（Ha）、赤倉岳火砕岩（Haa）

命名 赤倉岳溶岩は、南部・谷田（1961）が命名。赤倉岳火砕岩は新称である。南部・谷田（1961）は、赤倉岳溶岩の記載を行っている。また、彼らは、赤倉岳で磐梯台の爆裂が起こり、泥流（岩屑なだれ）が発生したと推定している。村岡・高倉（1988）は、赤倉岳第1期溶岩、赤倉岳第2期溶岩、赤倉岳第3期溶岩の3つのステージに区分した。一方、工藤ほか（2004）は、山体崩壊が2回あったことを示し、1度目と2度目の山体崩壊の間、アグルチネートなどからなる赤倉岳第3期火砕岩類からなる山体が形成され、最後に赤倉沼を中心に赤倉第4期溶岩類が噴出したと解釈している。ここで、噴出物の大部分が北隣の「青森東部」図幅内に分布することから、本図幅内での分布は限られている。そこで、赤倉岳溶岩と赤倉岳火砕岩の2つに区分した。

模式地 標高1,521 mピークの北東100m地点（N 40° 40’ 7.5″, E140° 52′ 51.5″）。

層序関係 空中写真判読によれば、赤倉岳溶岩は田茂箔岳溶岩を覆う。また、南側の井戸岳溶岩によって覆われるが、上部は指交関係にある。赤倉岳山頂付近では、赤倉岳噴出物の上位の土壌中に層厚1.5cmの毛馬内火砕堆積物が見られる。

分布・層厚 赤倉岳周辺及び北東方向に5km、東方向に1.4km、西方向に2.1kmの範囲まで分布する。赤倉岳溶岩と赤倉岳火砕岩の互層の比高は約900mである。本図幅北隣の青森東部図幅内の赤倉岳北東斜面では、幅1.6 kmの古期馬蹄形崩壊地形が存在する。それに対応する形で、幅550mの新期馬蹄形崩壊地形が開いている（工藤ほか、2004；第5.38図A）。赤倉岳溶岩・火砕岩の山体崩壊による岩屑なだれ堆積物が、田代平に広く分布している。

岩相 赤倉岳火砕岩は、アグルーチネート、ブルカノ
式噴火堆積物、水蒸気吹発堆積物、仏火灰物などからなる。馬蹄形崩壊地形の上部に厚さ 5 ～ 10 m の少なくとも 3 枚のアグルチネート層が露出している（第 5.38 図 A）、また、水蒸気吹発堆積物とブルカノ式堆積物の互層も露出している（第 5.39 図 B）。馬蹄形崩壊地形の上部付近では、仏火灰物（熱溶結したアグルチネート、降下スコリア堆積物、ブルカノ式降下堆積物、マグマ水蒸気吹発堆積物など）が多数露出している（第 5.38 図：工藤ほか, 2004）。赤倉岳山頂西部付近では、降下スコリアの自体の温度と過重で再溶融し圧密した緻密な降下スコリアのレンズが見られる。赤倉岳山頂付近の赤倉沼火口付近では、冷却節理の発達した多面体で囲まれた火山弾が多数見られ（第 5.39 図 A）、これは、ブルカノ式降下堆積物である可能性が高い。

赤倉岳溶岩は、アーガブルック溶岩流からなり、上下にクリンカーを伴う。山麓付近に分布する赤倉岳溶岩は、比較的なだらかな地形をつくる。

溶岩及び火砕岩の岩質は、石英かんらん石普通輝石紫蘇輝石安山岩、かんらん石普通輝石紫蘇輝石安山岩である。SiO₂ の含有量は、57 ～ 59 wt.％である（Muraoka, 1989MS；工藤, 1999MS）。

地質時代 0.24 ± 0.12 Ma, 0.03 ± 0.05 Ma, 0.24 ± 0.06 Ma の K-Ar 年代が報告されている（新エネルギー総合開発機構, 1987）。また、岩屑なだれ堆積物から、0.14 ± 0.05 Ma の K-Ar 年代が報告されている（新エネルギー総合開発機構, 1987）。工藤ほか（2004）は、約 30 万年前～現在まで火山活動が継続していると考えている。本報告でも、K-Ar 年代値などから、赤倉岳溶岩・
模式地 車ヶ倉渓谷下る旧道沿い(N40°38′59.9″, E140°49′46.5″)及び大岳山頂付近(N40°39′22.0″, E140°52′50.9″)。

層序関係 大岳第1ステージ溶岩は、八甲田第2期火砕流堆積物を覆う。大岳第3ステージ溶岩は小岳溶岩や仙人岳溶岩を覆う。空中写真の観察によれば、大岳第1ステージ溶岩は硫黄岳溶岩に覆われる。したがって、大岳第2ステージ溶岩の一部は、硫黄岳溶岩よりも古いといえる。大岳溶岩の上部を部分的に十和田カルデラ起源の十和田八戸火砕流堆積物と十和田毛馬内火砕流堆積物が覆っている。大岳火砕岩は山頂付近のアルチネートからなる火砕丘(第5.41図A)を形成している。

分布・層厚 大岳第1ステージ溶岩は、大岳山頂から西方向に約5km、北東方向に約3km付近まで分布している。大岳第2ステージ溶岩は、西方向に4.2km、北東方向に3.8kmの範囲まで分布している。大岳第3ステージ溶岩は、西方向に2.1km、東方向に1.6kmの範囲まで分布している。大岳火砕丘は、大岳山頂から半径約500mの範囲に分布する。

岩相 大岳第1ステージ溶岩は、幅250〜500m程度、末端崖の高さ数10mのブロック溶岩である。また、車ヶ倉渓谷の模式地では、柱状節理が発達した厚さ30mの溶岩流の断面が露出している（第5.43図）。大岳第1ステージ溶岩の岩質は、石英含有かんらん石普通輝石紫蘇輝石安山岩である。大岳第2ステージ溶岩は、幅300〜700m程度、末端崖の高さ数50m以下のアア溶岩〜ブロック溶岩である。大岳第1ステージ溶岩の岩質は、かんらん石普通輝石紫蘇輝石安山岩である。大岳第3ステージ溶岩は、幅150〜800m程度、末端崖の高さ40m以下のブロック溶岩である。大岳第3ステージ溶岩の岩質は、かんらん石普通輝石紫蘇輝石安山岩である。大岳火砕丘は、主に層厚数m〜10m数程度のアルチネート層と降下スコリア堆積物の互層でできている（第5.41図B）。大岳山頂の北東200m地点にある小火口では、層厚6mの直径50cm以下の角礫からなる水蒸気爆発堆積物の上に、層厚7mのアルチネート層が見られる（第5.42図）。大岳山頂火口壁でも、直径20〜30cm以下の角礫を含むアルチネート層は少なくとも数枚以上露出している（第5.41図B）。大岳火砕岩の岩質は、かんらん石普通輝石紫蘇輝石安山岩である。

地質時代 工藤ほか（2004）によれば、大岳火山は20万年前以降火山活動を行っていると推定した。大岳第1ステージ溶岩では、0.15 ± 0.04 Ma、0.17 ± 0.04 Ma、0.16 ± 0.04 Ma、0.30 ± 0.06 Ma、2.99 ± 0.17 MaのK-Ar年代値（新エネルギー総合開発機構、1987）、及び0.16 ± 0.03 Ma（佐々木ほか、1998）のK-Ar年代値が報告されている。比較的信頼度の高いK-Ar年代値から、本報告では、大岳第1ステージ溶岩の噴出年代を、約30〜15万年前としておく（第2.2図）。

5. 7. 10 大岳溶岩（Ho1, Ho2, Ho3）、大岳火砕岩（Hoa）

命名 大岳溶岩は、南部・谷田（1961）が命名。大岳火砕岩は、新称・南部・谷田（1961）は、大岳火山噴出物を、大岳溶岩とし、OD-1, OD-2, OD-3, OD-4の4つに区分した。村岡・高倉（1988）は、大岳起源の噴出物を、大岳第1期溶岩、大岳第2期溶岩、大岳第3期溶岩の3つに区分した。工藤ほか（2004）は、大岳の噴出物を現地調査や空中写真判読から詳細に区分し、城ヶ倉溶岩、下湯溶岩、荒川溶岩、小渕沢溶岩、酸ヶ湯溶岩、地獄沼溶岩、下毛無岱溶岩、大岳溶岩、大岳火砕丘の9つの地質ユニットに区分した。ここでは、古い方から順に、大岳第1ステージ溶岩（Ho1）、大岳第2ステージ溶岩（Ho2）、大岳第3ステージ溶岩（Ho3）、大岳火砕岩（Hoa）の4つに区分した。これらのうち、大岳第1ステージ溶岩の噴出年代は、硫黄岳よりも古いが、ここまでまとめて記述する。
大岳第2ステージ溶岩では、0.12 ± 0.06 Ma、0.11 ± 0.11 Ma、0.09 ± 0.07 Ma の K‒Ar 年代値が報告されている（新エネルギー総合開発機構、1987）。これらの K‒Ar 年代値から、本報告では、大岳第2ステージ溶岩の噴出年代を、約10万年前としておく（第2.2図）。

大岳第3ステージ溶岩では、0.04 ± 0.06 Ma の K‒Ar 年代値が報告されている（新エネルギー総合開発機構、1987）。本報告では、この K‒Ar 年代値から大岳第3ステージ溶岩の噴出年代を、約5万年前としておく（第2.2図）。

大岳山頂部では、最近4200～1600年前の間にも水蒸気爆発やブルカノ式噴火が起こっており（次節参照）、それ以前にも断続的に噴火活動が起こっていた可能性が高いと考えられる。本報告では、大岳火砕岩の噴出年代を約5万年前～現在までとしておく（第2.2図）。

5.7.11 北八甲田火山群起源の最新期降下テフラ
（地質図では省略）

命名 工藤ほか（2000、2003a）、工藤ほか（2000、2003a）は、北八甲田火山群起源の最新期6000年間の降下テフラには、南西山麓地獄沼火口起源の3つの水蒸気爆発堆積物（Hk-J1、J2、J3）と、大岳起源の5つの水蒸気爆発及びブルカノ式噴火堆積物（Hk-1、2、3、4、5）が存在することを示した（第5.44図）。

模式地 地獄沼南（N40°38′39.5″、E140°51′27.9″）、及び小岳西（N40°38′59.1″、E140°53′9.1″）。

層序関係 上位より、地獄沼水蒸気爆発堆積物（Hk-J1、Hk-J2、Hk-J3）、白頭山-苫小牧火山灰（B-Tm：町田ほか、1981）、十和田a火山灰（To-a：町田ほか、1981）、Hk-1、Hk-2、十和田b火山灰（To-b：大池、
1972), Hk-3, Hk-4a, 4b, Hk-5a, 5b, 5c, 5d, 5e, 十和田中道下降降下粒石（To-Cu：大池ほか、1966）の順である（工藤ほか、2003a；第5.44図）。

分布・層厚 Hk-1 は、小岳西の模式地では、層厚約 30 cm であり（第5.45図）、分布軸は、大岳付近から東北東の方向である（工藤ほか、2003a）。Hk-2 は、高田大岳と小岳の鞍部付近に局所的に分布する（工藤ほか、2003a）。Hk-3 は、毛無岳湿原付近に分布し、分布軸は大岳山頂から北西の方向である（工藤ほか、2003a）。Hk-4 は、小岳西の模式地では、層厚 25 cm（Hk-4a = 17 cm, Hk-4b = 8 cm）であり、同心円状の分布を示す（工藤ほか、2003a）。Hk-5 は、模式地では、層厚約 10 cm であり、分布軸は大岳山頂から東北東の方向である（工藤ほか、2003a）。

Hk-J1, J2, J3 は、地獄沼の近傍に分布する（第5.46図：工藤ほか、2000）。地獄沼の模式地の層厚は、Hk-J1 が 5 cm 以下、Hk-J2 が 30 cm、Hk-J3 が 0.5 〜 1.5 cm である。

岩相 Hk-1 は、比較的粘土質の細粒火山灰を主体とし、5 cm 以下の亜角の岩片やスコリアを含む（第5.45図B）。変質した岩片やスコリアが多い。岩片はその表面が厚さ約 1 mm 以下の細粒火山灰で覆われていることが多い。これは、Hk-1 が水蒸気爆発起源であることを示している（工藤ほか、2003a）。Hk-2 は、粘土質の細粒火山灰層であり、新鮮な安山岩岩片を主体とする。Hk-3 は、細粒火山灰層であり、新鮮な安山岩岩片を主体とする（工藤ほか、2003a）。Hk-4 は、上部の Hk-4a と下部の Hk-4b に分かれる。Hk-4a は、比較的角張った岩片を含む粗粒火山灰層であり、新鮮な安山岩岩片を主体とする。Hk-4b は、細粒火山灰層であり、新鮮な安山岩岩片を主体とする（工藤ほか、2003a）。

Hk-J1, J2, J3 は、粘土化した細粒火山灰を主体とし、10 cm 以下の熱水変質が進んだ岩片を多量に含む。
一部、To-a起源の発泡した軽石や火山ガラスをわずかに含む（工藤ほか, 2000）.

工藤ほか(2003a)は、Hk‒5直下の土壌から4.8 cal ka BP, Hk‒4直下の土壌とテフラ中の炭化木片から4.2 cal ka BP, Hk‒3直下の土壌から3.1 cal ka BP, Hk‒2直下の土壌から平均2.0 cal ka BP, Hk‒1直下の土壌から1.5 cal kaBPの^{14}C年代を得ている（第5.44図）。また、工藤ほか（2000）は、Hk-J3直下の土壌から680 ± 100 BP (cal AD 1289-1403), Hk-J2直下の土壌から340 ± 110 BP (cal AD 1457-1654), Hk-J1直下の土壌から350 ± 110 BP (cal AD 1449-1649)の^{14}C年代を得ている（第5.44図）。したがって、北八甲田火山群の大岳及びその山麓周辺では、ごく最近まで火山活動が継続しており、今後も小規模な噴火の可能性が高いと考えられる（工藤ほか, 2000, 2003a）。

5.8 十和田火山

5.8.1 御鼻部山溶岩（Ts）
命名 Hayakawa（1985）、Hayakawa（1985）は、十和田湖北岸の新第三系の上部に露出する安山岩溶岩を御鼻部山溶岩と呼び、南八甲田火山群の溶岩であるとした。村岡・高倉（1988）は、青撫山火砕物・溶岩も御鼻部山溶岩に含めていたが、火砕物を主体とする青撫山火砕物・溶岩と岩相が異なり、噴出年代も異なることから、ここでは区分している。模式地 御鼻部山三角点の北西600 m地点国道沿い（N40°30′42.4″, E140°52′44.5″）。
層序関係 模式地では、層厚1 mの中間降下軽石層の下に、層厚約4 mの御鼻部山溶岩が露出している。また、十和田湖の北壁では、新第三系の梨木沢凝灰岩層の上に、全層厚200 m以下で露出する。
分布・層厚 十和田湖北壁の上部に分布する。層厚は200 m以下。
岩相 北壁では、各層厚が数m〜10 mの、少なくとも数枚のブロック溶岩・アア溶岩の断面が確認できる。溶岩の岩質は、かんらん石含有紫蘇輝石普通輝石安山岩溶岩である。
地質時代 佐々木ほか（1998b）は、御鼻部山溶岩か
ら 0.19 ± 0.10 Ma の K‒Ar 年代値を報告している。また、上位の青摂火山碎物・溶岩の年代値がテフラ層序や土壤層厚などから約 0.20 Ma 以降（Hayakawa, 1985）であること、下位の八甲田第 2 期火砕流堆積物の年代値が、0.40 〜 0.30 Ma であることから、御鼻部山溶岩の噴出年代は、0.40 〜 0.20 Ma ごろであると考えられる。このことは、御鼻部山溶岩の噴出が、北八甲田火山群の活動とほぼ同時期であったことを示す（第 2.2 図）。

5.8.2 青摂山火山碎物・溶岩（Ta）

命名 Hayakawa（1985）。ただし、Hayakawa（1985）は青摂山火山ではなく、青摂火山と記載している。Hayakawa（1985）は、十和田カルデラ北東部に先カルデラ火山である青摂火山の存在を指摘した。そして、青摂火山の噴出物が火砕物を主体とし、一部で溶岩流を挟むこと、そしてこれらの層厚が合計約 200 m に及ぶことを示した。

模式地 十和田湖北東部国道 102 号線沿いの本図幅と南隣の「十和田湖」図幅の境界付近（N40°30′0.5″, E140°55′47.7″）、及び奥入瀬渓谷双竜ノ滝（N40°30′57.6″, E140°58′38.5″）。

層序関係 十和田湖北東の模式地周辺では、青摂山火山碎物・溶岩の断面が露出している。青摂山火山碎物・溶岩は大部分が火砕物からなる。中には、洞爺カルデラ起源の洞爺火山灰（0.11 Ma；町田, 1983；町田ほか, 1987）が含まれている（Hayakawa, 1985）。青摂山火山碎物・溶岩の下位には、湖面のレベル（十和田湖図幅内の大豊石付近）に八甲田第 1 期火砕流堆積物が露出している。また、いくつかの露頭を総合すると、青摂山火山碎物・溶岩の下位には、下から順に、十和田奥瀬火砕流堆積物、十和田八戸火砕流堆積物、十和田ニノ倉降下スコリア堆積物、十和田中嶺降下軽石堆積物が重なり合っている。一方、奥入瀬渓谷沿いの双竜ノ滝付近では、層厚 20 m の青摂山溶岩が八甲田第 2 期火砕流堆積物を直接覆う。

分布・層厚 十和田湖北東部のカルデラ壁や奥入瀬渓谷沿いの双竜ノ滝など青摂山周辺に分布する。この周辺に十和田カルデラの先カルデラ火山である青摂山火山が存在していた（Hayakawa, 1985）。十和田湖北東部の模式地付近では、層厚は約 150 m である。また、双竜ノ滝では層厚 20 m の青摂山溶岩が露出している（第 5.47 図）。

岩相 十和田湖北東部の模式地では、層厚数 10 cm 〜 数 m の降下軽石層やラハール堆積物を主体とした火砕物が 10 厘以上露出している。また、上位付近に層厚数 m のクリンカーを伴う溶岩流が露出している。この溶岩流の下位のレベルに、層厚 10 cm 程度の白い洞爺火山灰層が挟まっている。双竜ノ滝の溶岩流は、柱状節理やエンタブラチャが発達している（第 5.47 図）。双竜ノ滝付近の溶岩流の岩質は、かんらん石紫蘇輝石普通輝石安山岩である。

地質時代 十和田湖北東部の模式地付近で、上位付近で、0.11 Ma の洞爺火山灰を含む。また、下位の御鼻部山溶岩の K‒Ar 年代値が、0.19 ± 0.10 Ma（佐々木ほか, 1998b）を示す。上位の十和田奥瀬火砕流堆積物の年代値は約 55 ka と推定されている（Hayakawa, 1985）。十和田湖北東部の模式地での十和田奥瀬火砕流堆積物と青摂山火山碎物・溶岩との間の約 2 m の土壌層の層厚も考慮すると、青摂山火山碎物・溶岩の噴出年代は、約 20 〜 7 万年前であると考えられる（第 2.2 図）。

5.8.3 十和田奥瀬火砕流堆積物（Tu）

命名 大池・中川（1979）を改称。大池・中川（1979）は、本堆積物を奥瀬火砕流と名付けた。本事例では、給源火山を明確にするため、十和田奥瀬火砕流堆積物と命名する。

模式地 十和田湖北東国道 102 号線標高 530 m 付近の沢から 100 m ほど上流側に上った地点（N40°29′55.0″, E140°55′58.2″）。

層序関係 模式地周辺では、層位的に、青摂火山碎物・溶岩を覆い、十和田八戸火砕流堆積物に乗る。一方、スコリア隣接区部では基質を覆う。また、ソスペ川付近では、十和田大不動火砕流堆積物に覆われる。

分布・層厚 十和田湖の北東壁や十和田湖北東の谷の中に局所的に分布する。模式地付近で、層厚は約 20 m である。

岩相 スコリア質の火砕流堆積物である（第 5.48 図）。溶岩流の厚さが限られており、明瞭なフローユニットは識別できない。基質部分は、褐色ガラスを主体としている。基質部分の粒子のサイズは粗粒～中粒に分布し、褐色・深褐色が主体である。基質部分は、 références (Dusky yellowish brown, 10YR 4/2), 褐色（Dusky yellowish brown, 10YR 4/2）の色を示す。
堆積物は、直径20cm以下のスコリアを多数含む。スコリアは縞状を示す場合も多い（第5.48図B）。スコリアは比較的よく発泡している。発泡度は、大きいスコリアのほうが高い傾向がある。気泡の直径は約15mm以下である。スコリアの円磨度は、亜円から亜角である。比較的新鮮なスコリアは、黒色（Grayish black, N2）、ややうすい黒色（Dark gray, N3）、淡い緑色（Olive gray, 5Y 4/1）などの色を示す。風化によって、赤みがあったオレンジ色（Moderate reddish orange, 10R 6/6）、うすいピンク色（Grayish orange pink, 10R 8/2）、うすい黄土色（Very pale orange, 10YR 8/2）、うすい茶色（Pale yellowish brown, 10YR 6/2）などの色を示すこともある。スコリアの岩質は、普通輝石紫蘇輝石安山岩である。模式地では、直径30cm以下の岩片を多数含む。岩片は安山岩や玄武岩が主体であり、変質した溶岩や凝灰岩片も見られる。

地質時代 Hayakawa（1985）は、放射年代より年代が決っているテフラと土壌の厚さから、本堆積物の噴出年代を、約5万5千年前と推定している（第2.2図）。

5.8.4 十和田大不動火砕流堆積物（To）

命名 東北地方第四紀研究グループ（1969）を改称。東北地方第四紀研究グループ（1969）は、本堆積物を大不動浮石流凝灰岩と呼んだ。本報告では、給源火山を明確にするため、十和田大不動火砕流堆積物と命名する。

模式地 温川から温ノ沢峠に至る国道102号線沿い標高580m付近（N40°30′24.4″, E140°48′53.3″）。

層序関係 黄瀬川沿いの林道の露頭（N40°33′8.1″, E140°56′0.8″）では、層厚8mの十和田大不動火砕流堆積物が露出しており、層厚50cmの円礫に富むラハール堆積物を挟んで、上位に層厚5mの十和田八戸火砕流堆積物が見られる（第5.49図A）。小幌内川上流の露頭（N40°31′28.5″, E140°55′58.4″）では、上位に層厚2mの十和田中間降下軽石堆積物があり、下位には、層厚8mの湖成堆積物を挟んで、層厚8mの十和田奥瀬火砕流堆積物が露出している。西隣の黒石図幅内の井戸沢（N40°37′2.1″, E140°41′28.0″）では、層厚4mの十和田大不動火砕流堆積物の上に、層厚20～
70 cm のラハール堆積物を挟んで、層厚 5 m の十和田八戸火砕流堆積物が見られる（第 5.49 図 B）。

分布・層厚 十和田湖東部や南西部に分布する。十和田湖東北西部では谷沿いに露出している。

岩相 十和田大不動火砕流堆積物は、軽石質の大規模火砕流堆積物である。比較的深い層帯では、数枚以上の層厚数 m のフローユニットが識別できる。またフローユニットの下部に岩片が分厚い部分が見られることが差し迫りが 15 cm。軽石の色は、白色（White, N9）が多い。また、透明で光沢状に見える部分もある。軽石質（N9 に N8 〜 N5 が混ざっている）もある。軽石の発泡度は、上位の十和田八戸火砕流堆積物中の軽石に比べると低い傾向がある。軽石は直径 1 cm 大の気泡もある。しかし、気泡間の壁の厚さは十和田八戸火砕流堆積中の軽石よりもやや厚い傾向がある。気泡は一方向に伸びている傾向がある。軽石の岩質は、普通輝石紫蘇輝石デイトサイトである。十和田八戸火砕流堆積物の軽石には角閃石が含まれているので、両者を識別できる（Hayakawa, 1985）。軽石の円磨度は亜角〜亜円である。堆積物中には、数〜10 cm 以下の安山岩、玄武岩、凝灰岩が含まれていることが多い。一部変質した新第三紀の溶岩や凝灰岩の岩片を含む。岩片の量は、十和田八戸火砕流堆積物に比べて多い傾向がある。基質の色は、ベージュ色（Very pale orange, 10YR 8/2）、うすい黄色（Grayish orange, 10YR 7/4）、うすい茶色（Pale yellowish brown, 10YR 6/2）を示す。黒石図幅中の井戸沢の露頭（第 5.49 図 B）では、十和田大不動火砕流堆積物には、幅 15 cm 以下のパイプ構造が多数見られた（第 5.50 図 A）。また、この露頭では、直径 50 cm 大の炭化木片を含んでいた（第 5.50 図 B）。

地質時代 Satoh (1966) は、秋田県小坂付近の十和田大不動火砕流堆積物直下の泥炭からは、> 33,000 年 BP の 14C 年代を得ている。佐藤 (1969) は、千田付近の堆積物中には含まれる炭化木片からは、> 31,900 年 BP の 14C 年代を得ている。大池 (1978) は、堆積物中の炭化樹幹について、25,560 ± 1,340 年 BP の 14C 年代を得ている。本報告では、14C 年代値などから十和田大不動火砕流堆積物の噴出年代を約 2 万 5 千年前としておく（第 2.2 図）。

5.8.5 十和田八戸火砕流堆積物（Th）

命名 中川ほか（1972）を改称。中川ほか（1972）は、本火砕流堆積物を八戸浮石流凝灰岩と呼んだ。本報告では、給源火山を正にするため、十和田八戸火砕流堆積物と命名する。
岩相 十和田八戸火砕流堆積物は、軽石質の大規模火砕流堆積物である。比較的大きい露頭では、数枚以上のフローユニットが確認できる。各フローユニットでは、軽石の逆級化構造が見られ、上部に層厚50cm程度の軽石濃集層が見られることがある。また、フローユニットの下部には比較的岩片が多い傾向がある。フローユニットの最下部に軽石や岩片の岩有量が上部よりも少ないlayer 2a層（Sparks et al., 1973）が見られることがある。十和田八戸火砕流堆積物は、模式地では直径30cm以下の軽石を多量に含む（第5.51図 A）。堆積物の上部に比較的大きな軽石が集まっている。軽石の色は大部分が白色（White，N9）であり、繊維質で光沢状に見える部分もある。また、一部二次的変質によってやや黄色かった色（Yellowish gray，5Y 8/1）の軽石も存在する。更に灰色軽石（Very light gray-Medium gray，N8，N7，N6，N5）も見られる。軽石の岩質は、角閃石普通輝石紫蘇輝石デイサイトである。下位の十和田大不動火砕流堆積物の軽石は角閃石斑晶を含まないため、角閃石の有無で両者を区別できる（Hayakawa, 1985）。軽石の発泡度は良好である。比較的大きい軽石には、直径1cm大の気泡も見られる。気泡は一方向に伸びている傾向がある。軽石の円度は、円形が多い、直径数cm以下の岩片を含む。岩片の種類は、安山岩や玄武岩が多く、スコリア片や変質した凝灰岩も含まれる。基質部分は、極粗粒砂-粗粒シルトサイズの粒子からなり、淘汰が悪い。基質部分の色は、ベージュ色（Very pale orange, 10YR 8/2）を示すことが多い。脱ガスパイプが発達していることもある。直径10cm以下の炭化木片を含むこともある。北隣の青森東部図幅内にある赤倉岳と田茂萢岳の間の鞍部付近では、層厚約20〜30cmの十和田八戸火砕流堆積物が見られる（第 5. 51 図 B）。数cm以下の薄黄色の軽石を多数含んでおり、淘汰が悪い。

ソスペ川上流部（N40° 30′ 53.0″ , E140° 55′ 57.2″）では、層厚5m以上の比較の大きい岩塊や巨礫を含むラグブレッチャ（Walker, 1983）岩相が見られる（第5.52図、早川, 1993）。直径1mの大新第三紀凝灰岩のブロックや、直径25cmのシルト岩のブロック、直径20cm以下の新第三紀の変質した溶岩や凝灰岩の岩片などを多量に含んでいる（第5.52図 B）。部分的に礫支持の部分がある。直径数cmの白色軽石を含む。この地点
は、カルデラ中心から7 km、カルデラ壁から約900 mしか離れていないため、このようなラグブレッチャ岩相になったと考えられる。

地質時代 発生年代は、約13,000年BPである（第2.2図）。大池（1963、1964）は、堆積物中の炭化樹幹から、12,700±260年BPの14C年代を得ている。Satoh（1966）は、秋田県小坂付近の堆積物中の炭化木片から、10,400±200年BPと12,000±250年BPの14C年代を得ている。竹内（1971）は、三戸付近の八戸火山灰層下2 mの泥炭層（三木木層）中の木片から、26,600±1750年BPの14C年代を得ている。大池ほか（1977）は、十和田八戸火砕流堆積物直下の十和田八戸降下軽石層の埋没土から、13,960±510年BPの14C年代を得ている。大池ほか（1977）は、十和田八戸降下軽石層中の埋没化石材林の一つから、13,770±510年BPの14C年代を得ている。

5.8.6 十和田中掫降下軽石堆積物（Tc）
命名 大池ほか（1966）を改称。大池ほか（1966）は、本降下軽石堆積物を「中掫浮石層」と呼んだ。松野（1961）の十和田系（a）火山灰層に相当する。本報告では、給源火山を明確にするため、十和田中掫降下軽石堆積物と命名する。
模式地 ソスペ川沿いの国道102号線標高380 m地点（N40°31′17.1″，E140°47′6.4″）。
層序関係 十和田中掫降下軽石堆積物は、下位より、中掫降下軽石、金ヶ沢降下軽石、宇樽部火山灰の3つのユニットで構成される（早川，1983b）。
分布・層厚 十和田湖の中湖（なかのうみ）（第1.3図・第1.4図A）N40°31′17.1″、E140°47′6.4″）から噴出した堆積物。地質図に示した等層厚線は、中掫降下軽石、金ヶ沢降下軽石、宇樽部火山灰の3つのユニットで構成される（早川，1983b）。では、層厚約4 mである。図幅東部の焼山付近では層厚130 cm以下となり、図幅北東部の湯ノ台では層厚50 cm以下、黑森南部付近では層厚約20 cm以下、図幅北西部の八田甲田火山群周辺では層厚10〜1 cm以下となる。給源から離れるにつれて徐々に層厚が減衰しており、地域ごとに見ると比較的層厚が揃っている。図幅西部地域では、十和田中掫降下軽石堆積物は分布していない。
岩相 十和田中掫降下軽石堆積物の3つのユニットのうち、中掫降下軽石の下部1 mの層は、上部層に比べると類質岩片や遊離結晶の含有量が多い傾向がある（第5.53図A）。岩片の多い層は上位層との境界は比較的シャープに分かれる。下部の層は岩片の含有量が多いので、中湖のクレータ形成のため、噴火初期に多量の地層を吹き飛ばしたためであると考えられる。この地点の軽石の最大径は約6 cmであり、岩片の最大径は約7 cmである。軽石同士は礫支持していて、淘汰がよい。軽石の円磨度は角（angular）〜亜角（subangular）である。軽石の気泡は5 mm以下であり、比較的丸い直径0.5〜1 mmの気泡が多数観られる。上部のやや風化が進んだ部分では、軽石は、黄土色（Dark yellowish orange, 10 YR 6/6）、うすい黄土色（Grayish orange, 10YR 7/4）、黄色（Pale yellowish orange, 10YR 8/6）、茶色（Light brown, 5YR 5/6）などの色を示す。また、堆積物中央部や下部の新鮮な部分では、軽石は、青い色（Yellowish gray, 5Y 8/1）、ごくうすい黄土色（Very pale orange, 10YR 8/2）の色を示す。また、灰土軽石（Light gray, N7; Very light gray, N8）も含んでいる。軽石の岩質は、普通輝石紫蘇輝石デイサイトである。また、堆積物は特徴的に多数の遊離結晶を含む。堆積物中の岩片
は、新鮮な玄武岩、安山岩が多い。スコリアも含んでい
る。
中掫降下軽石の上位には、中掫軽石噴火に引き続き連
続して噴出した金ヶ沢降下軽石、宇樽部火山灰が見られ
る（第 5.53 図 B）。模式地では、金ヶ沢降下軽石堆積物
は、下位の層厚 4 cm と 2 cm の繊粒火山灰層と、上位
の層厚 7 cm の降下軽石層でできている。降下軽石層中
の軽石の最大径は 3 cm である。宇樽部火山灰堆積物
は、層厚 18 cm であり、火山灰を主体とする。中央部
付近に層厚 5 mm と 1 cm のやや粗粒なスコリア層を挟
む。また最上部にも層厚 2 cm のスコリア層がある。発
泡度は中程度である。スコリアは、斜長石、普通輝石、
紫蘇輝石、磁鉄鉱を含む。

地質時代 十和田中掫降下軽石堆積物の噴出年代は、
約 5,400 年 BP である（第 2.2 図）。松井ほか（1969）
は、直下の埋没腐植層から 6,550 ± 170 年 BP の 14C 年代
を報告している。八甲田湿原研究グループ（1969）は、南八
甲田の黄瀬萢湿原泥炭中の中掫軽石層直下の泥炭から、
4,200 ± 110 年 BP の 14C 年代を得ている。また、早川
（1983b）は、5,390 ± 140 年 BP（6.0 cal ka BP）の 14C
年代を報告している。工藤ほか（2003a）は、直下の土
壌試料の加速器質量分析計による 14C 年代を求め、
5,320 ± 90 BP、5,250 ± 90 BP の年代値を求めるこ
とができる。

5. 8. 7 十和田毛馬内火砕流堆積物（Tk）
命名 内藤（1966）を改称。内藤（1966）は、本火砕
流堆積物を、毛馬内軽石質火山灰層と呼んだ。また、平
山・市川（1966）は、本堆積物を新期軽石流堆積物と呼
んだ。大池（1972）は、毛馬内火砕流にともなう広域テ
フラを十和田 a テフラと呼んだ。これは、松野（1961）
の八甲田系（a）火山灰に相当する。本報告では、給源火
山を明確にするため、十和田毛馬内火砕流堆積物と命名
する。

模式地 十和田湖北西、滝ノ沢展望台南東県道 454 号
線標高 650 m 付近（N40° 29′ 42.5″、E140° 50′ 7.2″）。

層序関係 模式地では、十和田八戸火砕流堆積物の上
位に厚さ 2 m の再堆積物を挟んで分布する。

分布・層厚 模式地では層厚約 10 m。他の地域では
比較的薄い。北八甲田火山群付近では、層厚は約 10 cm
以下である。北八甲田火山群の赤倉岳山頂付近（給源か
ら北へ 25 km、標高 1,548 m）でも層厚 1.5 cm の十和
田毛馬内火砕流堆積物が存在している（第 5.54 図 B）。
このように、標高の高い場所も薄く覆うことから、十和
田毛馬内火砕流は、低アスペクト比火砕流（Walker et
al., 1980）の特徴を示す。

北八甲田火山群及び南八甲田火山群付近には、層厚は
薄いものので、広域に十和田毛馬内火砕流堆積物が分布し
ている。こうした低アスペクト比の火砕流は、ごく短時
間のうちに、高速度で広域に広がり、広範囲に渡って火
山災害をもたらすと考えられることから、堆積物の分布
範囲を正確に把握することは火山防災上重要である。本
図幅では、調査中に堆積物を確認できた地点及びその周
辺で地形的に存在が推定できる分布を地質図に示した。
実際には、ほぼ北八甲田火山群と南八甲田火山群及びそ
の周辺地域で更に広い範囲に渡って分布していると考え
られる。

岩相 模式地では、軽石の最大径は約 8 cm。軽石は
白色軽石（N9）が多い（第 5.54 図 A）。軽石は繊維状
で、細状光沢を持つものも多い。比較的よく発泡してい
る。数 mm～1 cm 大の気泡が見られる。軽石の円磨度
は、亜円が多い。一部、亜角である。軽石中の斑晶は、
斜長石、紫蘇輝石、普通輝石、磁鉄鉱を含む。斑晶のサ
イズは、長径 1 mm 以下の、弧状光沢のある粒子、直徑
2 cm 以下の灰色軽石（N8）も含んでいる。黒曜石も含
んでおり、喷火時に十和田湖の水でマグマが急冷されて
できたと考えられている（Hayakawa, 1985）。取り込み
岩片の最大径は約 3 cm である。岩片の種類は、安山岩

第 5.54 図 十和田毛馬内火砕流堆積物
A. 十和田湖北西、滝ノ沢展望台付近の模式地
の堆積物。よく発泡した白色軽石、黒曜石を含
む。B. 北八甲田火山群赤倉岳山頂付近（給源
から 25 km 地点）の層厚 1.5 cm の堆積物。
や玄武岩が多い。基質の色は、うすいベージュ色 (Yellowish gray, 5Y 8/1) である。基質は、一部酸化鉄によつて汚染されている部分もある。基質は、極粗粒砂〜粗粒シルトサイズ、若干の黒曜石、岩片からなり、淘汰が悪い、軽石の岩質は、普通輝石紫蘇輝石デイサイトである。

北八甲田火山群赤倉岳山頂付近では、厚さ 1.5 cm の十和田毛馬内火砕流堆積物が見られる (第 5.54 図 B)。十和田毛馬内火砕流堆積物は、ここでは、数 mm 以下の白色軽石や少量の黒曜石の破片を含み、淘汰が悪い。乱流状態の火砕流が流走している間に、より粗粒な軽石や岩片が火砕流内で沈降し、次々と堆積して行った結果、25 km 離れた地点ではこのような数 mm 以下の細粒の軽石や岩片のみになった可能性が高い。

地質時代 十和田毛馬内火砕流の発生年代は、西暦 915 年（町田ほか、1981）である（第 2.2 図）、十和田毛馬内火砕流堆積物は、秋田県鷹ノ巣町胡桃館遺跡で、平安時代中期の古代家屋を覆っている（平山・市川、1966；秋田県教育委員会、1968）。

5.9 地すべり堆積物 (d)

南八甲田火山群の乗鞍岳西部、駒ヶ峯北部、横岳東部、北東部中野川流域などで、地すべり堆積物が見られる。地質図上で示したものは比較的規模の大きいものである。小規模な地すべりも本図幅内に数多く分布しているが、地質図上で省略した。地すべり堆積物の表面には、地すべりに特徴的なコンプレッションリッジ（大八木、1992）などの地形が見られることがある。堆積物の層厚は、数 m 〜 10 m 程度である。南八甲田火山群に見られる地すべれ堆積物は、主に南八甲田第 1・第 3 ステージ溶岩・火砕岩、駒ヶ峯溶岩を母材とする。中野川流域の地すべり堆積物は、八甲田山第 1 期火砕流堆積物や南八甲田第 1 ステージ溶岩・火砕岩などを母材とする。基質が露出している部分では、比較的淘汰の悪い粘土質の部分も見られる。

5.10 段丘堆積物 (t)

本図幅内の東部の十和田湖温泉郷付近と、南西部の温川、井戸沢付近に小規模な段丘堆積物が分布する。堆積物の層厚は約数 m 〜 10 m であり、沖積層よりも 1 段高い地形を構成する。構成物は、中野川流域の火砕流堆積物、八甲田第 1 期・第 2 期火砕流堆積物、中野川中・下流で火砕流堆積物などを母材としたラーチール堆積物を主体とする。温川・井戸沢付近では、南八甲田火砕流堆積物、温川土流堆積物、青荷凝灰岩などを母材としたラーチール堆積物を主体とする。

5.11 沖積層 (a)

本図幅内では、沖積層は主に温川温泉の下流と奥入瀬川沿いに分布している。沖積層は、未固結であり、八甲田第 1 期火砕流堆積物、八甲田第 2 期火砕流堆積物、十和田八戸火山破砕堆積物、中核降下軽石を母材とする円磨された砂礫を母材とする。石の取りれた最大数 m 大の岩塊も多数見られる。

—67—
本地域は、大きく見ると東北脊梁中軸部を含んでおり、広域的な隆起域にあたっている。中新統には、この脊梁中軸部に伴う、南北方向に連続的な褶曲群が発達しているが、その多くは鮮新統以降の火山噴出物に覆われて不明な部分が多い。しかし、本調査の結果から、この東北脊梁中軸部の隆起が、単に若い火山体の存在による地形的な高まりによるだけではなく、中新統の構造的な隆起によることが明らかである（地質断面図参照）。この中に、沖浦カルデラ、八甲田カルデラ、十和田カルデラといったカルデラが局地的、不連続な陥没構造をつくる。以下に、主な地質構造を記載する。

6. 1 褶 曲

6. 1. 1 中新統の褶曲

以下で述べる褶曲は、基本的に中新統の褶曲であるが、各記載に述べるように、鮮新統の尾開山凝灰岩や虹貝凝灰岩の分布も、これら中新統の褶曲のうちの、向斜軸部に見られる場合が多い。このことから、鮮新統も、これらの褶曲運動に参加しているものと思われる。

黄瀬川背斜 新称。推定上の褶曲である。黄金平付近の黄瀬川を見ると、板留層下部層安山岩溶岩が露出しており、少なくとも、その西翼の梨木沢凝灰岩部層に対しては下位層が露出していることが確かである。これと、十和田カルデラ北壁の東落ちの構造とを合わせて考えると、この付近に背斜が推定される。推定上の褶曲ではあるが、東北脊梁中軸部を特徴づける、比較的両翼の広い、大きな背斜であると推定される。

黄瀬川向斜 新称。本褶曲の存在は、黄瀬川付近では確実である。この付近では、両翼が開き、褶曲軸が南にプランジしている。

八甲田山背斜 新称。推定上の褶曲である。酸ヶ湯付近の城ヶ倉渓谷を見ると、板留層下部層安山岩溶岩が露出しており、少なくとも、その西翼の梨木沢凝灰岩部層に対しては下位層が露出していることが確かである。これに対して、その東翼の露出は断片的であるが、梨木沢凝灰岩部層等、相対的に上位の地層が露出している。このため、その存在が推定される。推定上の褶曲ではあるが、東北脊梁中軸部を特徴づける、比較的両翼の広い、大きな背斜であると推定される。

城ヶ倉背斜 新称。推定上の褶曲である。これも、貫入岩の城ヶ倉デイスサイトのため詳細は不明である。西の城ヶ倉向斜より東側は西傾斜であり、板留層下部層安山岩溶岩等、東に向かって次第に下位層が露出する。しかし、東の酸ヶ湯付近の城ヶ倉渓谷には、より上位の梨木沢凝灰岩部層が分布する。このため、この間に背斜の存在が推定される。この背斜は小規模である。

6. 1. 2 第四系の褶曲

沖浦カルデラの青荷凝灰岩に伴って、いくつかの褶曲が見られる。これら広域テクトニクスというよりも、マグマやカルデラの応力場に伴う局地的なテクトニクスの結果と思われる。

青荷向斜 新称。本褶曲の存在は、両翼の傾斜から確実であるが、その規模は小さい。

大川原背斜 新称。本褶曲の存在は、両翼の傾斜から確実であり、背斜軸は南にプランジしている。しかし、その規模はごく小さい。

大川原向斜 新称。本向斜は比較的両翼が広い。向斜軸は南にプランジしている。鮮新統の虹貝凝灰岩はここにプランジしている。向斜軸は東北脊梁中軸部の八甲田山背斜や黄瀬川背斜に次いで、規模が大きいといえる。

下湯背斜 新称。本背斜は比較的両翼が広い。荒川付近にその背斜軸のディプレッションが認められるが、この関とここから南北にやや上昇して行くように見える。本背斜の西翼は広がりが大きく、しかも、褶曲軸の近くでは50°以上を傾斜角を持っている。本図幅地域の北にあられる下湯温泉付近では、更に高角度の部分も見られる。本背斜は東北脊梁中軸部の八甲田山背斜や黄瀬川背斜に次いで、規模が大きいといえる。

6. 1. 2 第四系の褶曲

沖浦カルデラの青荷凝灰岩に伴って、いくつかの褶曲が見られる。これは地質断面図というよりも、マグマやカルデラの応力場に伴う局地的なテクトニクスの結果と思われる。

青荷向斜 村岡・長谷（1990）に命名。青荷凝灰岩は塊状の岩相やスランプ構造に卓越するため、走向傾斜すらばらつきが大きい。しかし、カルデラ内縁をお囲め（caldera moat）状に取り巻く青荷向斜の存在が石黒田図幅地域では明瞭であり（村岡・長谷、1990）、本地域に入っても、ある程度、その延長が認められる。

沖浦中央ドーム 新称。小高ほか（1970）が最初に指摘し、村岡・長谷（1990）が追認したように、青荷向斜
の内側は、論理的には青荷ドームとなる。しかし、本報では、その内側に、中心を定義できる沖浦中央ドームを識別した。ここには、玄武岩質であることが特異であるが、噴出中心を示す六水沢玄武岩や六水沢玄武岩岩脈や六水沢玄武岩の火道等が集中的に分布している。この構造はバイアス型カルデラの再生ドームに相当するものといえよう（Smith and Bailey, 1968）。

6.2 断層

以下、規模が大きいと思われるものから順に、記述する。

沖浦環状正断層系 村岡・長谷（1990）が命名。沖浦カルデラ陷没の直接の原因となった一群の環状正断層は、黒石図幅地域では、沖浦環状正断層系と名づけられている（村岡・長谷, 1990）。北側の中野川断層については、中野川より北側に青荷凝灰岩の分布が張り出していることから見て、本図幅地域内ではほとんど消滅しているものと判断される。南側の小国断層については、黒石図幅地域では確認断層であるが、本図幅地域内では推定断層のため、推定断層として地質図上に表現した。小国断層も温川沢付近ではほぼ消滅するものと推定される。これら沖浦環状正断層系が東側で消滅する理由については、青荷凝灰岩の「沖浦カルデラの東限」の項に記述した。

滝ノ股川断層 新称。第6.1図のように、滝ノ股川中流域において、城ヶ倉ダイサイト貫入岩体中に見られる。破砕帯の厚さが1.2 mであり、破砕帯の両端には、それぞれ厚さ5 cm程度の粘土帯がある。破砕帯の中央の大部分は、ネットワーク状に粘土化した城ヶ倉ダイサイトからなり、比較的固結している。断層鏡面の方向はN30° E, 69° Wである。断層鏡面上には、明瞭ではないが、水平的な条線（striaion）が見られる。このことから、横ずれ断層の可能性がある。本断層は、少なくとも滝ノ股川下流域の形成を規制した断層とみなせる。

袖川沢断層 新称。袖川沢の一支流に見られる破砕帯の厚さが1.5 mの断層である。断層面はN88° W, 70° Nであり、南盤（下盤）が八甲田第2期火砕流堆積物、北盤（上盤）が八甲田第1期火砕流堆積物であるので、明瞭な逆断層である。本断層は袖川沢の形成を規制した断層とみなせる。しかも、八甲田第2期火砕流堆積物を切っているため、約40万年より若い断層といえる。

大小川沢断層 新称。第6.2図のように、大小川沢の青荷凝灰岩中に見られる。やや傾斜角の異なる断層面が、何枚も入り組んだ、複雑な断層である。これら全体を含めると、破砕帯の厚さは2 mをやや超える。主な断層鏡面の方向はN15° W, 72° E及びN13° W, 58° E及びN19° W, 41° Eである。条線（striaion）は垂直的であり、西盤（下盤）は珪藻土質シルト岩の下部に軽石凝灰岩が見られるが、東盤（上盤）は珪藻土質シルト岩の下部に軽石凝灰岩が見えており、東盤上が逆断層と判断される。
新潟断層

新称。第6.4図のように、本断層の露頭は新湯よりやや上流側の城ヶ倉渓谷にあり、尾間山凝灰岩を切っている。破砕帯の厚さは約20cmであり、断層面はN85°E、75°Nである。すれのセンスは不明である。興味あることは、この破砕帯が酸性変質粘土からなり、その中にシリカ脈が見られることがある。本断層を走向方向に延長すると、新湯、ふかし湯、地獄沼といった、酸ヶ湯周辺で、最も地熱の自然徵候が優勢な地点が上盤側に配列することである。一つの可能性として、本断層はこれらの温泉や噴気の自然湧出を規制しているかもしれない。

沖浦中央ドームの正断層系

第6.5図のように、沖浦中央ドーム付近には、地質図上に表現するほどは大きくないが、正断層系が多く見られる。第6.6図に、その方向をシュミットネット（等面積ステレオ図法）の下半球に大円で投影し、合わせて、それぞれの落差（垂直隔離）を示した。一つの特徴は、圧倒的に北盤落ちのものが卓越することである。これは、ENE−WSWに長軸をもつ沖浦中央ドームにおいて、断層観察に適した露出の制約から、観察地点がほとんど長軸の南側に偏ってしまったためであろう。換言すれば、長軸の北側では、南盤落ちの正断層が卓越する可能性があり、ENE−WSWの長軸に当たる青荷川付近は、沖浦中央ドームの長軸地溝（longitudinal graben, Smith and Bailey, 1968）に相当する可能性がある。この意味で、そこに、岩脈や火道が分布することには必然性がある可能性がある。また、ここに断層面はN15°W、72°E及びN13°W、58°E及びN19°W、41°Eである。条線（striation）は垂直的であるので、正断層と逆断層の可能性がある。しかし、西盤（下盤）は珪藻土質シルト岩のみならず、東盤（上盤）は珪藻土質シルト岩の下部に軽石凝灰岩が見えていることから判断すると、東盤上がりの逆断層と判断される。この断層は、大小川沢下流の形成を規制する断層であろう。

橇ヶ瀬沢断層

新称。橇ヶ瀬沢下流に見られる断層であり、破砕帯の厚さは20cm程度である。断層はN10°W、90°Eであり、地層のドラッグの仕方から、逆断層であることが明瞭であること、落差（垂直隔離）は露頭面でわかる限り、7m以上である。本断層は八甲田2期火砕流堆積物までを確実に切っているが、東盤落ちの地形が読み取ることができることから、更に若い地質単元まで切っていると推定される。断層面が垂直のため、すれのセンスは不明であるが、その位置から、東北脊梁の縁部を特徴づける逆断層と推定される。

御鼻部山断層

新称。本断層は地形から見た推定断層であり、本研究では確証は得られていない。

第6.3図 大小川沢林道における上滝ノ沢断層の露頭
スケールは人物参照。大小川沢土石流堆積物を明瞭に切っている。断層面の厚さは約20cmであり、断層面はN25°W、32°Eであり、地層のドラッグの仕方から、逆断層であることが明瞭である。落差（垂直隔離）は露頭面でわかる限り、7m以上である。

第6.4図 城ヶ倉渓谷における新湯断層の露頭
その位置は新湯の下のダムより100m程度上流。スケールはないが、断層破砕帯の幅が約20cm。本断層は尾間山凝灰岩を切っている。破砕帯の厚さは約20cmであり、断層面はN85°E、75°Nである。すれのセンスは不明である。この破砕帯は酸性変質粘土からなり、その中にシリカ脈が見られる。本断層を走向方向に延長すると、新湯、ふかし湯、地獄沼といった、酸ヶ湯周辺で、最も地熱の自然徵候が優勢な地点が上盤側に配列し、本断層はこれらの温泉や噴気の自然湧出を規制しているかもしれない。
れらの正断層系の走向は、平均的には東西方向であるが、かなりばらついている。これは一般に再生ドームでは、長軸地溝が最も支配的な構造であるが、バイアスカルデラそれ自身に見られるように、再生ドーム上には、このほかに放射状地溝（radial graben）や頂上地溝（apical graben）など、表層伸張に伴うさまざまな正断層が伴うためであろう（Smith and Bailey, 1968）。なお、これら沖浦中央ドーム付近の正断層系については、地質図に表現するほど大きくないため、地質平面図上には表現していないが、C-D 地質断面図上にその存在を模式的に示した。

6.3 重力異常

第6.7図は、本地域の重力図（ブーゲ異常、仮定密度=2.3g/cm³）と、本調査で得られた褶曲や断層を比較したものである。本図幅地域は東北脊梁中軸部が中央を南北に走しており、これに対応した高重力異常帯が地域の中央部の広い範囲を占めている。露出の制約から、中新統の褶曲が判明したのは一部に過ぎないが、それでも、判明した帯を地層は、広い高重力異常帯の中に見られる波状の変化と比較的よく対応している。また、大部分の断層は、重力の急傾斜帯に位置している。そのような部分は歪の集中帯であり、これが断層の発生と関係しているのである。また、そうでない袖川沢断層のような場合でも、このこと東西トレンドとなっている微妙な重力の傾斜帯とよく対応している。

この地域中央の高重力異常帯の西側は、冲浦カルデラの陥没構造に対応して、明瞭な半環状構造が見られる。その中にはあっても、沖浦中央ドームは対称的な高重力異常帯の一線をなしている。本地域中央の高重力異常帯の東側は、小さな中新統の露出が示すように、地層が基本的に東に緩傾斜した単斜構造と推定されるが、重力異常も同様の傾向を示している。

更に、本地域の北端には、重力異常がやや低下して行く傾向が見られる。これは八甲田カルデラに対応している。他方、地域東側の広い低重力異常帯については、現在のところ、その原因は不明である。鮮新世のカルデラが伏在している可能性、構造的な盆状構造が伏在している可能性など、いくつかの可能性が考えられる。

第6.5図 沖浦中央ドームの二庄内ダム原石採取場における小正断層
スケールがないが、北盤（左側）が2m落ちている。

第6.6図 沖浦中央ドームにおける小正断層系のストレオ投影
下半球に、大円を投影。ストレオ図の左の白丸が露頭の位置。背景図には、国土地理院2万5千分の1地形図『温川』を使用。
第6.7図 八甲田山幅地帯における重力図と構造要素との比較

重力図は駒澤正夫主任研究員が編集・作成したブーゲ異常図であり、仮定密度は2.3g/cm³である。
第7章 応用地質

（村岡洋文・宝田晋治）

7.1 鉱床

南部・谷田（1961）が、八甲田山周辺の鉱床を詳しくまとめている。彼らによれば、八甲田山周辺では、第四紀火山の火山活動により、硫黄・褐鉄鉱の鉱床が形成されている。硫黄鉱床は、赤倉岳の東麓、大岳の南西斜面及び酸ヶ湯東方に存在する。褐鉄鉱鉱床は、青森鉱山、十和田鉱山、地獄沼東方、駒ヶ峯北斜面及び櫛ヶ峯東麓に存在する。いずれも交代性鉱床である。このほかに、荒川沿いにドロマイト鉱床が存在する。

地質図上には、褐鉄鉱鉱床として青森鉱山、十和田鉱山（南部ほか、1960）及び荒川沿いのドロマイト鉱床（南部ほか、1963）の位置を示した。南部ほか（1960）によれば、青森鉱山は昭和32年に4,087トンが採鉱されたが、低品位のため、中止された。しかし、昭和32年及び34年にポーリング採鉱が実施され、昭和35年から採鉱が再開された。この文献が記述された頃までは採鉱されていた模様であるが、その後、採鉱が中止された経緯については、不明である。青森鉱山について、南部ほか（1960）は、埋蔵粗鉱量を約42,971トン、可採精鉱量としては約23,000トンを見積もっている。

南部ほか（1960）によれば、十和田鉱山は昭和19年に約3,000トンが採鉱されたが、同20年には輸送用油の不足により、中止された。昭和28年に採鉱が再開されたが、同31年に、鉱石が枯渇して、閉山された。昭和31年までの総採鉱量は45,000トンである。

南部ほか（1963）によれば、荒川沿いの3箇所のドロマイト鉱床については、いずれも中新世新世の礫質泥岩に伴う。厚さ50cm程度の薄層またはレンズ状の未開発の鉱床である。ドロマイト鉱石はMgOを16～17wt%を含むが、SiO₂を8～13wt%、Al₂O₃を2.5～3.3wt%含む低品位のものであり、鉱量の面でも、品位の面でも、今後ともに開発は困難と思われる。

7.2 自然災害

1997年7月12日19時すぎに、「青森東部」図幅内の八甲田山麓の田代平の窪地で、訓練中の自衛隊員3名が死亡するガス事故が発生した（平林ほか、1997）。窪地は、田代平と北西-南東方向に走る県道の田代牧場との分岐点から西方に約100m離れた林の中にあり（N40°40’58.6”、E140°55’39.5”）、窪地の大きさは、南北約18m、東西約13mで、最深部は地表から約8mの深さである。事故の翌日7月13日に15～20％の高い二酸化炭素濃度が計測された。二酸化炭素の安定同位体は、窪地内部の空気の値が5.7％であった。これは、二酸化炭素の起源が火山性であったことを示す（平林ほか、1997）。

1999年3月9日の夜、奥入瀬渓谷馬門岩西400m地点（N40°31’33”、E140°58’37”）にて八甲田第1期火砕流堆積物及びその下位層の地すべりが発生した。幅130m、高さ80mの地すべり堆積物により、奥入沢渓谷沿いでの国道102号線が1週間以上閉鎖された。

7.3 地熱及び温泉

本図幅地域は八甲田周辺の地熱地域における最も高温の地域にあたっており、酸ヶ湯、新湯、猿倉、谷内、鷲など、元来自然湧出泉で、比較的高温の温泉がいくつも分布している。それぞれの地熱地域における主要な地下資源・観光資源となっている。これら温泉の温風を発生させるためは、本地区で、これまでに試験を含むいくつかの本格的な地熱調査が試みられ、既に断念をするに至っているが、中規模であれば、その開発の可能性は十分にあると思われる。ここでは、いくつかの項目について、本図幅地域の地熱及び温泉についてまとめる。

7.3.1 主要な温泉・地熱那覇

第7.1表に本地域の主要な温泉についてまとめる。また、それの分布を第7.1図に示す。第7.1表には、焼山付近にある十和田湖温泉郷のデータを含めていない。十和田湖温泉郷は、近年、温泉ホテルや温泉旅館が増えてきており、その数では本地域最大となっている。しかし、十和田湖温泉郷については、従来は少なくとも猿倉温泉からお湯を輸送していたが、現在では、独自に掘削していっている可能性もあるが、その詳細は不明のため、第7.1表から省略した。

第7.1表に示した本地域の温泉は、大きく2群に分けられる。一つは八甲田カルデラに伴う温泉群であり、一部は沖浦カルデラに伴う温泉群である。簡単のため、前者を八甲田熱水系、後者を沖浦熱水系と呼ぶことにする。本地域の温泉の大部分は前者であり、温泉と温泉が混ざり合うことから、本地域の温泉は、大体に酸性・弱酸性型で特徴づけられる沖浦熱水
第7.1表 八甲田山地域の主要な温泉の諸元

<table>
<thead>
<tr>
<th>温泉名</th>
<th>代表的泉源名</th>
<th>排出量 l/分</th>
<th>溢出温度 ℃</th>
<th>pH</th>
<th>矿物分類</th>
<th>生産方法</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>城ヶ湯</td>
<td>城ヶ湯3号泉</td>
<td>130</td>
<td>51.0</td>
<td>7.25</td>
<td>温泉酸·中性型</td>
<td>火力湯出</td>
<td>1)</td>
</tr>
<tr>
<td>鶴ヶ湯</td>
<td>鶴の湯</td>
<td>240</td>
<td>67.6</td>
<td>1.20</td>
<td>硫酸·酸性型</td>
<td>自然湯出</td>
<td>1)</td>
</tr>
<tr>
<td>鶴ヶ湯</td>
<td>ふかし湯</td>
<td>66</td>
<td>90.7</td>
<td>1.00</td>
<td>硫酸·酸性型</td>
<td>自然湯出</td>
<td>1)</td>
</tr>
<tr>
<td>新湯</td>
<td>あかの湯</td>
<td>300</td>
<td>63.0</td>
<td>1.49</td>
<td>硫酸·酸性型</td>
<td>自然湯出</td>
<td>1)</td>
</tr>
<tr>
<td>新湯</td>
<td>たまぎの湯</td>
<td>30</td>
<td>52.6</td>
<td>7.15</td>
<td>硫酸·中性型</td>
<td>自然湯出</td>
<td>1)</td>
</tr>
<tr>
<td>新湯</td>
<td>田川ダム付近</td>
<td>200</td>
<td>42.8</td>
<td>1.70</td>
<td>硫酸·酸性型</td>
<td>自然湯出</td>
<td>1)</td>
</tr>
<tr>
<td>嵯峨</td>
<td>町有井</td>
<td>25</td>
<td>69.3</td>
<td>6.02</td>
<td>硫酸·中性型</td>
<td>暗道出</td>
<td>1)</td>
</tr>
<tr>
<td>嵯峨</td>
<td>小笠原5号</td>
<td>90.5</td>
<td>80.5</td>
<td>5.04</td>
<td>硫酸·酸性型</td>
<td>暗道出</td>
<td>1)</td>
</tr>
<tr>
<td>嵯峨</td>
<td>小笠原5号</td>
<td>5</td>
<td>76.8</td>
<td>5.42</td>
<td>硫酸·酸性型</td>
<td>暗道出</td>
<td>1)</td>
</tr>
<tr>
<td>谷地</td>
<td>あつ湯</td>
<td>40</td>
<td>40.0</td>
<td>4.92</td>
<td>硫酸·酸性型</td>
<td>自然湯出</td>
<td>1)</td>
</tr>
<tr>
<td>谷地</td>
<td>かん湯</td>
<td>53</td>
<td>46.9</td>
<td>6.93</td>
<td>硫酸·中性型</td>
<td>自然湯出</td>
<td>1)</td>
</tr>
<tr>
<td>平六</td>
<td>かん湯</td>
<td>40</td>
<td>46.3</td>
<td>8.10</td>
<td>硫酸·酸性型</td>
<td>吹出</td>
<td>1)</td>
</tr>
<tr>
<td>源江</td>
<td>源江1号</td>
<td>6285</td>
<td>61.0</td>
<td>7.20</td>
<td>硫酸·中性型</td>
<td>不明</td>
<td>2)</td>
</tr>
<tr>
<td>源江</td>
<td>源江</td>
<td>122</td>
<td>67.0</td>
<td>6.90</td>
<td>硫酸·中性型</td>
<td>不明</td>
<td>2)</td>
</tr>
<tr>
<td>源江</td>
<td>源江</td>
<td>3</td>
<td>47.5</td>
<td>8.80</td>
<td>硫酸·中性型</td>
<td>不明</td>
<td>2)</td>
</tr>
</tbody>
</table>

1) 新エネルギー総合開発機構 (1986b), 2) 比留川 (1979)

第7.1図 八甲田山地域における温泉と地熱調査井の分布
背景図は国土地理院の数値地図 50 m メッシュより作成した地形陰影図.
系は黒石図幅地域のものも含めて、大部分が食塩・中性型で特徴づけられる。これについては村岡・上田（1991）が論じているように、八甲田広域地熱地域においては、湯ノ沢、碇ヶ関、沖浦及び八甲田といった4つのカルデラの热水系の化学組成が、各カルデラ独自の地球化学的な進化史を反映して、ClイオンとSO₄イオンの濃度図上でほぼユニックな範囲に区分される（第7.2図）。

通常、陥没カルデラはそのタイプに関わらず、一つの排水系を持つ。これは最初に溢れた最も低いカルデラ縁が、以後も選択的に下刻されて行くためである。ところが八甲田カルデラではカルデラ縁から溢れるほど大型の後カルデラ丘が生じたため、通常は一つであるはずの水系涵養域が4つに分断されている。すなわち、第7.1図に示す田代平、酸ヶ湯、猿倉、谷地の4つの水系涵養域である。その結果、そのそれぞれに対応する駒込川、荒川、蔦川、湯尻沢（下流で中里川）という排水系が生じた。ただし、本報告の八甲田カルデラのカルデラ縁は、村岡ほか（1983）や村岡・高倉（1988）より、若干内側に想定しているため、田代平以外の3つの水系涵養域については盆状であるとは限らない。しかし、それらが分水嶺によって画された独立の水系涵養域であることは変わりない。この中で、最も大きく、盆状の水系涵養域である田代平が最も優勢な温泉湧出域になるかというと、経験的に見てそうではないらしい。大きく、盆状の水系涵養域は多量の天水の涵養域となり、この冷たい地下水が温泉の湧出をマスクするからである（村岡・上田、1991）。酸ヶ湯、猿倉、谷地といった小さな3つの水系涵養域が、八甲田熱水系において最も優勢な温泉湧出域に当たっているのは、そのように温泉湧出を妨げる要因がないためと思われる。

なお、第7.1図には、断層も記載した。新湯の3つの泉源、温泉のほかに97℃の噴気帯を持つふかし湯及び水蒸気爆発による火口の地獄沼は、北傾斜の新湯断層の上盤側に、ほぼこの断層と平行して配列している。
がって、新潟断層が直接これらの地熱流体湧出を規制している可能性や、同系統の断層がこれらの地熱流体湧出を規制している可能性など、少ながらず成因的な関係があるように見える。

沖浦カルデラの内縁には、沖浦環状断層系に規制されて多数の温泉が分布している。したがって、平六や温泉川といった沖浦地熱系についても、大きく見れば、冲浦環状断層系に規制されているものと考えられる。

7.3.2 主要な地熱調査井

第7.2表に本地域における主要な地熱調査井をまとめることができる。その位置は第7.1図に示す。石油資源開発㈱が1982年に掘削した5坑の200 m級地熱調査井のうち、1坑が本地域に掘削されている。新エネルギー総合開発機構（1983）が地熱開発促進調査「沖浦地域」において掘削した9坑の地熱調査井のうち、2坑は本図幅地域内に掘削されている。新エネルギー総合開発機構（1987）が全国地熱資源総合調査（第2次）「八甲田地域」において掘削した深度1,000mの地熱調査井が城ヶ倉温泉の西に掘削されている。続いて、新エネルギー・産業技術総合開発機構（1993）が地熱開発促進調査「八甲田西部地域」を実施し、8坑の地熱調査井のうち、5坑は本地域内に掘削されている。このうちのうちの1坑は本図幅地域と青森東部図幅地域の境界付近に位置し、北向きであるが、一応、その位置を境界付近に記載した。

第7.2表のように、本地域で最も高い温度を記録した地熱調査井は、219.5℃のN3-HD-8井である。これは現在のところ、周辺地域を含む八甲田広域地熱地域でも、最高の温度である。しかし、この坑井は、優勢な透泥帯に当たっているため、噴気誘導(swabbing)したものの、自噴には至らなかった。なお、本地域内には含まれないが、N3-HD-7という坑井はHK-61-1井のほぼ真北に位置し、本図幅地域と青森東部図幅地域との境界からわずか100m程度北に掘削された。この坑井の最高温度は192.4℃であるが、優勢な透泥帯に当たっているため、噴気誘導(swabbing)の結果、蒸気1.5t/h、熱水12.0t/hの噴出に成功している。この噴出は、周辺地熱を含む八甲田広域地熱地域の地熱調査井において、黒石図幅地域東部のN56-OU-4井に続く、2番目の成功例である。

7.3.3 地熱構造と地熱資源量

第7.3図は、本地域の周辺地域を含む八甲田広域地熱地域から、収集した地熱調査井や温泉井の温度データから作成した温度勾配図である（村岡・長谷,1990；村岡・上田,1991）。この図は新エネルギーや産業技術総合開発機構（1993）の地熱開発促進調査「八甲田西部地域」より前に作成されたため、荒川付近については、その結果を入れて修正する必要がある。しかし、地熱的な温度構造から見れば、微修正に過ぎないので、ここではそのまま使用する。この図に示すように、大局的な温度構造から見れば、八甲田広域地熱地域では、八甲田カルデラと沖浦カルデラに最も有望な熱水対流系をなしている。

この温度構造を用い、貯留層の基底深度を仮定すれば、米国地質調査所の容積法（Brook et al.,1979）によって、地熱資源量を推定できる。その計算過程は、村岡（1991b）に詳細を記述したので、ここでは結果のみを述べる。村岡（1991b）は米国地質調査所の容積法によって、八甲田カルデラにおいて35.3万kW・30年、沖浦カルデラにおいて26.7万kW・30年の地熱資源量を見積もり、ただし、その後、地熱関係者の間では、容積法が、過大な資源量の見積もりを与えるということが暗黙の定説になっている。最近、その原因の一つが判明した。米国地質調査所の容積法では、熱エネルギーから電気的エネルギーに変換する際の発電効率に0.4を仮定している。これは発電の現場から見ると、相当に過大な値であるらしい。現実的な変換効率は0.15といわれている。この点を考慮すれば、上述の地熱資源量は37.5%に減ずる必要がある。そこで、これらの見積もりを37.5%に下方修正すると、八甲田カルデラにおいては13.2万kW・30年、沖浦カルデラにおいては10.0万kW・30年の地熱資源量が見積もりられる。これらは両熱水系を全て開発した場合の見積もりであり、普通は立

第7.2表 八甲田地域の主要な地熱調査井の諸元

<table>
<thead>
<tr>
<th>坑井名</th>
<th>位置</th>
<th>掘削深度 m</th>
<th>最高温度 ℃</th>
<th>掘削年度</th>
<th>掘削機関名</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-4</td>
<td>青森市折原区</td>
<td>200.5</td>
<td>5.7</td>
<td>1982</td>
<td>石油資源開発㈱</td>
</tr>
<tr>
<td>N57-OU-8</td>
<td>黒石市青荷沼</td>
<td>1502.0</td>
<td>167.1</td>
<td>1982</td>
<td>新エネルギー総合開発機構</td>
</tr>
<tr>
<td>N57-OU-9</td>
<td>黒石市青荷沼</td>
<td>1000.0</td>
<td>143.5</td>
<td>1982</td>
<td>新エネルギー総合開発機構</td>
</tr>
<tr>
<td>HK-61-1</td>
<td>青森市南都戸</td>
<td>1001.8</td>
<td>169.8</td>
<td>1986</td>
<td>新エネルギー総合開発機構</td>
</tr>
<tr>
<td>N1-HD-3</td>
<td>青森市逆川町</td>
<td>1001.6</td>
<td>124.6</td>
<td>1989</td>
<td>新エネルギー・産業技術総合開発機構</td>
</tr>
<tr>
<td>N2-HD-4</td>
<td>青森市荒川</td>
<td>1003.2</td>
<td>122.0</td>
<td>1990</td>
<td>新エネルギー・産業技術総合開発機構</td>
</tr>
<tr>
<td>N2-HD-5</td>
<td>青森市荒川</td>
<td>1501.4</td>
<td>175.6</td>
<td>1990</td>
<td>新エネルギー・産業技術総合開発機構</td>
</tr>
<tr>
<td>N3-HD-6</td>
<td>青森市城ヶ倉</td>
<td>1564.0</td>
<td>192.3</td>
<td>1991</td>
<td>新エネルギー・産業技術総合開発機構</td>
</tr>
<tr>
<td>N3-HD-8</td>
<td>青森市城ヶ倉</td>
<td>1503.0</td>
<td>219.5</td>
<td>1991</td>
<td>新エネルギー・産業技術総合開発機構</td>
</tr>
</tbody>
</table>
第7.3図 八甲田広域地熱地域における温度構造（村岡・長谷, 1990）

コンターの数字は100m当たりの温度勾配。黒丸はデータを取得した坑井の位置。

地の制約等から、そこごく一部しか開発できないのが実情である。この点まで考慮すれば、これらの見積りは、かなり現実的な値といえるように思われる。
文献

秋田県教育委員会（1968）胡桃館埋没建物発掘調査概報．秋田県文化財調査．14p．

藤原大佑（2001MS）東北日本，南八甲田火山群の形成史と
噴出物の時空変遷．弘前大学大学院理学研究科修士論文．51p．

藤原大佑・佐々木・真（2000）南八甲田火山群ソレアイト系
列岩の岩石学的特徴．日本火山学会秋季大会講演予稿集．p. 113．

八甲田湿原研究グループ（1969）青森県八甲田湿原泥炭層の
年代について（演旨）．第四紀研究，vol. 8，p. 64-65．

長谷隆和（1978）地熱探査とリモートセンシング．地熱エネルギー，no. 8，p. 7-16．

早川由紀夫（1983 a）火山豆石として降下堆積した十和田八戸火山灰．火山，vol. 28，p. 25-40．

早川由紀夫（1983 b）十和田火山中腹テフラ層の分布，粒度
組成，年代．火山，vol. 28，p. 263-273．

早川由紀夫（1993）火山の地質巡査案内2：十和田湖．群馬
大学教育学部紀要．自然科学編，vol. 41，p. 53-78．

比留川 貴（1979）地熱開発基礎調査地化学調査報告「沖浦」，
地熱開発基礎調査報告書 No. 9，沖浦，その1，通商産業
省資源エネルギー庁，工業技術院地質調査所，p. 43-60．

Fleischer, R.L. and Hart, H.R.（1972）Fission track dating :
Techniques and problems．In Bishop, W. W., Miller, J.A.
and Cole, S.A. eds．Calibration of hominoid evolution．
Scottish Academic Press，p. 135-170．

藤井 敬三（1981）油川地域の地質・地域地質研究報告（5 万
分の1地質図幅）．地質調査所，38p．
井上 武（1964）弘前南方地域の地質. 秋田大学鉱山学部地下資源開発研究所報告, no. 30, p. 1–18.
井上 武・三橋栄一（1962）青森県南津軽郡大鰐町東部と碇ヶ関村における地質調査報告, no. 26, p. 60–73.

工藤 崇（1999）八甲田火山群のマグマ供給系. 日本火山学会 1999 年秋季大会講演予稿集, p. 4.
工藤 崇（1999MS）東北日本, 北八甲田火山群の形成史とマグマ供給系. 北海道大学大学院理学研究科修士論文, 114p.

町田 洋・新井房夫・宮内崇裕・奥村晃史 (1987) 北日本を
三村高久 (1979) 青森県津軽半島南部地域の構造地域学的研
松井 健・高橋 一・中馬敦夫・足利圭一 (1969) 青森県三
本木原付近の現世火山灰の噴出年代-日本の第四紀層
の 14C 年代 50 -. 地球科学, vol. 24, p. 264–266.
松野 正 (1961) 十和田・八甲田火山噴出物. 青森県農業試
験場研究報告, vol. 6, p. 1–73.
三村高久 (1979) 青森県津軽半島南部地域の構造地域学的研
中村高久 (1979) 青森県津軽半島南部地域の構造地域学的研
松井 健・高橋 一・中馬敦夫・足利圭一 (1969) 青森県三
本木原付近の現世火山灰の噴出年代-日本の第四紀層
の 14C 年代 50 -. 地球科学, vol. 24, p. 264–266.
松野 正 (1961) 十和田・八甲田火山噴出物. 青森県農業試
験場研究報告, vol. 6, p. 1–73.
木村明文・高倉伸一 (1985) 八甲田火山地域のカルデラ群. 月刊地球,
vol. 15, p. 713–717.
内藤博夫 (1966) 秋田県米代川流域の第四紀火山灰層と段丘地形. 地理評,
vol. 39, p. 463–484.
中田久夫 (1963a) 青森県の第四系. 青森県地質説明書. 青
森県, p. 65–92.
中田久夫 (1963b) 東北地方第四紀 Tephrochronology. 第四
中田久夫 (1972) 青森県の第四系. 青森県地質説明書. 青
森県, p. 71–120.
中田久夫・中馬教允・石田琢二・松山 力・七崎 修・井出
慶司・大橋昭二・高橋 一 (1972) 十和田火山地域の形成. 地質調査所報告,
no. 275, p. 97–111.
内藤博夫 (1966) 秋田県米代川流域の第四紀火山灰層と段丘地形. 地理評,
vol. 39, p. 463–484.
中田久夫 (1963a) 青森県の第四系. 青森県地質説明書. 青
森県, p. 65–92.
中田久夫 (1963b) 東北地方第四紀 Tephrochronology. 第四
中田久夫 (1972) 青森県の第四系. 青森県地質説明書. 青
森県, p. 71–120.
中田久夫・中馬教允・石田琢二・松山 力・七崎 修・井出
慶司・大橋昭二・高橋 一 (1972) 十和田火山地域の形成. 地質調査所報告,
no. 275, p. 97–111.
内藤博夫 (1966) 秋田県米代川流域の第四紀火山灰層と段丘地形. 地理評,
vol. 39, p. 463–484.
中田久夫 (1963a) 青森県の第四系. 青森県地質説明書. 青
森県, p. 65–92.
中田久夫 (1963b) 東北地方第四紀 Tephrochronology. 第四
中田久夫 (1972) 青森県の第四系. 青森県地質説明書. 青
森県, p. 71–120.
中田久夫・中馬教允・石田琢二・松山 力・七崎 修・井出
慶司・大橋昭二・高橋 一 (1972) 十和田火山地域の形成. 地質調査所報告,
no. 275, p. 97–111.
内藤博夫 (1966) 秋田県米代川流域の第四紀火山灰層と段丘地形. 地理評,
vol. 39, p. 463–484.
中田久夫 (1963a) 青森県の第四系. 青森県地質説明書. 青
森県, p. 65–92.
中田久夫 (1963b) 東北地方第四紀 Tephrochronology. 第四
中田久夫 (1972) 青森県の第四系. 青森県地質説明書. 青
森県, p. 71–120.
Geology of the Hakkōda San District

By

Shinji TAKARADA * and Hirofumi MURAOKA * *

(Written in 2003)

(ABSTRACT)

The Hakkōda San district is situated in northern Honshu and occupies an area between longitude 140°45′ E and 141°00′ E and between latitude 40°30′ N and 40°40′ N. This district is situated in the Green Tuff Region of the Inner Zone of Northeast Japan on the Neogene geologic province and axis of the Nasu Volcanic Zone on the Quaternary volcanic chains. Fig. 1 summarizes the geology of the district. In ascending order, the geology of the district is composed of (1) the Miocene Series almost entirely deposited under a marine environment, (2) the Pliocene Series deposited under a marine regression stage and (3) the Quaternary System deposited under an on-land environment although there still remains a lacustrine environment. Characteristics of the district are the Quaternary volcanoes. A part of the Okiura caldera of Early Pleistocene occupies the western area of the district, part of the Hakkōda caldera of Middle Pleistocene occupies the northern section of the district and part of the Towada caldera of Late Pleistocene occupies the southern area of the district. The younger volcanic units tend to cover a wider area.

Miocene

The Miocene is exposed in a very limited area on the surface, but extends almost the entire area at depth. The Miocene is composed of the Itadome Formation, Nuruyu Formation and Miocene Intrusive Rocks. The Itadome Lower Member consists of massive lava and hyaloclastite that are voluminous andesite derived from submarine lava flows. Based on the drill hole data, the maximum thickness of the member reaches 500 m. The Itadome Lower Member is the oldest exposed unit in the district that tends to be exposed near anticline axes of the Neogene. A representative lithologic unit of the Itadome Upper Member is a typical “green tuff” that is continuous and consists of voluminous green-altered dacite pumice tuff. The specific name that is given is the Nashikizawa Tuff Member (Muraoka and Hase, 1990). The Nashikizawa Tuff Member also includes hard shale, hard siltstone and dacite lava where the dacite lava is only exposed in a limited area in the northeastern part of the district near the Hakkōda caldera. The Nashikizawa Tuff Member is as thick as 400 m according to drill hole data. The Nuruyu Formation is only exposed in small areas in the northeastern and northwestern parts of the district. From its limited exposure, this formation is mainly composed of shale and siltstone with beds of dacite pumice tuff as thin as 7-10 m. The Miocene Intrusive Rocks consist of Arakawa Dolerite and Jyogakura Dacite that pierce the horizon of the Itadome Formation in this district. However, the equivalents of the Jyogakura Dacite are known to pierce the horizon of the Nuruyu Formation in the Kuroishi district (Muraoka and Hase, 1990). The shape of these intrusives is a sheet and dike on the Arakawa Dolerite and stock and dike on the Jyogakura Dacite. Among the Miocene Series, andesite lava and hyaloclastite of the Itadome Lower Member and dacite pumice tuff of the Nashikizawa Tuff Member are presumed to extend almost the entire district at depth.

Pliocene

The Pliocene is composed of Obirakiyama Tuff, Nijikai Tuff and Kuromori Lava. The Obirakiyama Tuff is a rhyolite pumice tuff of ca. 3.5 Ma and caldera-forming tuff of the 15-km diameter Yunosawa caldera that lies in the Kuroishi district in the west and Ikariagaseki district in the southwest. The Obirakiyama Tuff is relatively predominant in alkali constituents compared with the Quaternary volcanic rocks in the Northeast Japan arc. The tuff is relatively voluminous and reaches a maximum thickness of 500 m in this district based on drill hole data. Almost the entire Obirakiyama Tuff is observed as welded tuff in this district. Therefore, it is evident that the district once appeared above sea level during the time hiatus shown by the unconformity between the Miocene and Pliocene. The Nijikai Tuff is an andesite scoria tuff of ca. 2.5 Ma and caldera-forming tuff of the Ikariagaseki

* Institute of Geology and Geoinformation
**Institute for Geo-Resources and Environment
Fig. 1 Summary of the geology of the Hakkoda San district
A geomagnetic polarity time scale is quoted from Berggren et al. (1995).

<table>
<thead>
<tr>
<th>Geological age</th>
<th>Geological units</th>
<th>Lithology (with radiometric age and N.R.M. polarity)</th>
<th>Marine areas % (shaded)</th>
<th>Tectonics</th>
<th>Volcanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Ma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brunhes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pleistocene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quaternary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Okura Dacite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aoni Tt.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fujisawamoto Lava</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nijikai Tt.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obirakiyama Tt.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuruyu Fm.</td>
<td>Micocene Intrusives</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nashikozawa 'Tuff Mbr.'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Itadome Fm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower Mbr.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1 Summary of the geology of the Hakkoda San district
A geomagnetic polarity time scale is quoted from Berggren et al. (1995).
caldera that is 8 km (N-S) by 12 km (E-W). It lies in the Kuroishi district in the west and Ikariyaseki district in the southwest. Almost the entire Nijikai Tuff is observed as a submarine tuff in this district. Therefore, the district that once appeared above sea level at the Obirakikama stage, again became a marine environment by marine transgression.

Quaternary

The Quaternary is mainly divided into caldera-forming pyroclastic flow deposits and their pre-caldera and post-caldera volcanic units of three calderas: the Early Pleistocene Okiura caldera, Middle Pleistocene Hakkōda caldera and Late Pleistocene Towada caldera (Muraoka and Takakura, 1988). The Okiura caldera lies in the western part of the district and is a semi-circular caldera with a diameter of 15 km. The western half of the Okiura caldera has a circular structure that mostly lies in the Kuroishi district. The Aoni Tuff was produced several times from the Okiura caldera and ranges in age from 1.7 to 1.1 Ma. Afterward, the Okiura Dacite of ca. 0.9-0.7 Ma was erupted in the Okiura caldera as post-caldera cones. The intracaldera Aoni Tuff is almost entirely composed of lacustrine deposits and includes dacite pumice tuff, fine-grained tuff, basalt lava, lithic tuff and debris flow deposits. The intracaldera Aoni Tuff abuts the caldera basement units and is thinning out in the Ōu backbone range of the northern Honshu at its eastern edge of distribution. This shows that the Ōu backbone range already existed prior to the collapse of the Okiura caldera. Therefore, it is obvious that Okiura caldera initially had a semi-circular structure.

Afterward, the volcanic center shifted to the northeast, and Minami-Hakkōda Volcanoes were formed in the center of the district. The Ōsegawa Pyroclastic Flow Deposits with an intermediate-scale volume were erupted in part of the Minami-Hakkōda Volcanoes during 0.9-0.8 Ma and deposited in and around the Ōsegawa River. After Minami-Hakkōda Volcanoes were relatively mature, the Hakkōda 1st-stage and 2nd-stage Pyroclastic Flow Deposits were erupted in the northeastern part of the district during 0.70-0.30 Ma, and the Hakkōda caldera was formed. After the collapse of the Hakkōda caldera, the Kita-Hakkōda Volcanoes commenced their eruptions in the northern part of the district. The Hinadake, Takadaōtake, Tamoyachidake, Maeda, Narusawadaichii, Sennintai, Jōdake, Kodake, Iōdake, Akakuradake and Ōdake Volcanoes were formed as post-caldera volcanoes of the Hakkōda caldera. At the same time, pre-caldera volcanism of the Towada caldera occurred in the south part of the district, and Ohanabayama Lava and Aobunayama Pyroclastic Rocks were erupted. Three caldera-forming pyroclastic flows with intermediate-scale and large-scale volumes, the Towada-Osume, Towada-Ōfudo and Towada-Hachinohe Pyroclastic Flows occurred in the southern Towadakyo district during 55-15 ka, and the Towada caldera was formed. A large-scale Plinian-type eruption occurred in the Towada caldera at ca. 6 ka, forming the Chuseri Pyroclastic Fall Deposits (Hayakawa, 1983a). At least five events of Vulcanian and phreatic eruptions occurred at the summit of the Kita-Hakkōda Volcanoes during the last 6000 years (Kudo, et al., 2003a). At A.D. 915, the Kemanai Pyroclastic Flow occurred in the Towada caldera. At the present time, the Jigokunuma crater in the southwestern foot of the Kita-Hakkōda Volcanoes had three events of phreatic eruptions that occurred during A.D. 1300-1650 (Kudo et al., 2000).

Geologic Structure

The Hakkōda San district is characterized by the WNW-ESE or E-W contraction tectonics since 8-7 Ma, resulting in many folds and reverse faults. Whereas most of the Miocene dikes are trending in NNE-SSW, indicating that the WNW-ESE extension tectonics probably prevailed in the district before 8-7 Ma.

The limited exposure of the Miocene reveals many fold axes trending in NNE-SSW, where most wing of widths are less than 1 km. Relatively large-scale folds such as the Ōsegawa and the Hakkōda San Anticlines may basically form the Ōu backbone range, regardless of the high mountains of younger volcanic edifices. To the west, the Shimoyu Anticline is also a relatively large-scale fold. The circular Aoni Syncline forms a caldera moat of the Okiura caldera. The Okiura Central Dome lies at the center of the Okiura caldera and is comparable with the resurgent dome of the Valles type calderas (Smith and Bailey, 1968).

The Oguni Fault is one fault of the Okiura Circular Normal Fault System that caused the subsidence of the Okiura caldera (Muraoka and Hase, 1990), and its eastern extension appears in the southwestern corner of the district. However, its vertical separation becomes smaller to the east in the district so that the Okiura caldera was originally characterized by the half moon shape. The Takinomatagawa Fault may be a strike-slip type fault based on the lateral striation. The Kamitakinosawa, Okogawazawa and Sorigasesawa Faults are reverse faults and typical range-bounding faults to the Ōu backbone range. The Okiura Syncline forms a caldera moat of the Okiura caldera. The Okiura Central Dome lies at the center of the Okiura caldera and is comparable with the resurgent dome of the Valles type calderas (Smith and Bailey, 1968).

Economic Geology

Two limonite mines, the Towada Mine and Aomori Mine, are situated near the Jyogakura Gorge. They operated during and after the Second World War, but after a few years operation, they were abandoned.
There are many high-temperature volcanogenic hot springs in this district. They are one of the important resources in this district because many towns and villages in the district are developed as hot spring resort on these hot springs. The New Energy and Industrial Technology Development Organization has conducted three geothermal resource surveys for power generations in this district. As a result, the high potentiality of geothermal resources was confirmed, but geothermal power stations have still not been developed.
執筆分担
第 1 章 地形 宝田晋治
第 2 章 地質概説 村岡洋文・宝田晋治
第 3 章 新第三系新統 村岡洋文
第 4 章 新第三系鮮新統 村岡洋文・宝田晋治
第 5 章 第四系 宝田晋治・村岡洋文
第 6 章 地質構造 村岡洋文
第 7 章 応用地質 村岡洋文・宝田晋治

文献引用例
宝出晋治・村岡洋文（2004）八甲田山地域の地質。地域地質研究報告（5万分の1地質図幅）。産総研地質調査総合センター。86 p.

章単位での引用例
宝田晋治（2004）八甲田山地域の地質。第1章 地形。地域地質研究報告（5万分の1地質図幅）。産総研地質調査総合センター。p.1-6.

Bibliographic reference

Bibliographic reference of each chapter
裏表紙説明: 北八甲田火山群最高峰の大岳（標高 1,584 m）。毎年大勢の登山客が訪れる日本百名山の一つである。大岳は約30万年前から活動を続けている第四紀成層火山である。最近では、1,500年〜6,000年前にも何度か水蒸気爆発やブルカノ式噴火を行っている活火山である。手前の酸ヶ湯は登山基地となっており、酸ヶ湯温泉はひばの千人風呂で有名である（本文第1.6図）。

Back Cover Photo: Mt. Ōdake, the highest summit in the Kita-Hakkōda Volcanic Group (1,584 m a.s.l.). Mt. Ōdake is quite popular with climbers and selected as the best 100 mountains in Japan. Mt. Ōdake is a Quaternary stratovolcano and has been active since 0.3 million years ago. Mt. Ōdake is an active volcano and phreatic explosions and vulcanian eruptions occurred within 1,500 to 6,000 years ago. Sukayu in the front is a base site for climbers and famous for a large hot spring (See Fig. 1.6 in the text).