5万分の1地質図幅説明書

早 来

(札幌-第43号)

工業技術院地質調査所

通商産業技官	松	野	久	也
通商産業技官	石	田	正	夫

北海道開発庁

昭和35年

早来図幅正誤表

頁	行	誤	E
4	註記	採 色	彩 色
11	上から6行	幌 内 背 斜	平取背斜
17	上から7行	挾 長	狭 長
20	第4表 上から3行	(Cushmam)	(Cushman)
24	上から9行	図 幟 地 域	図幅地域
26	上から12行 Abstract	南東, すなわち, 部平取	南東部、すなわち、平取
4	上から5行	extrimity	extremity
5	下から5行 および14行	resorvoir	reservoir
5	下から5行	distibuted	distributed

23 頁 上から 19 行と 20 行の間に挿入

火山灰 b は冲積平野を除き広範囲に分布しており,東から西へ向つて厚さも粒度も増加する。 分級作用の極めて良 い白色ないし淡黄褐色,時には淡紅色を示す粒径 5~50 mm の軽石からなる。これは勝井義雄 30) のいう支笏降下軽 石堆積物に相当するものであるが,恵庭統および樽前統 8) 18) 31) の火山灰の一部が含まれる可能性がある。 位 置 図

()は1:500,000図幅名

目 次

1	地	形 …	1
II	地	質	4
	II.1 概	說·	
	II.2 新 贫	育三 系·	
	II. 2. 1	トニナ	7 層7
	II. 2. 2	振 老	層7
	II. 2. 3	軽 舞	層12
	II. 2. 4	萌 別	層16
	II.3 第	四系	
	II. 3. 1	段丘堆	資層 19
	II. 3. 2	火 山	灰20
	II . 3. 3	冲 積	層24
	II.4 地質	質構造	24
III	応用地	質 …	
文	献	•••••	
Abs	tract (in I	English) 1

1:50,000 地質図幅 早

来 (札幌一第43号)

工業技術院地質調査所

通商産業技官 松 野 久 也

通商産業技官 石田正夫

(昭和34年6月稿)

13)

この地質図幅調査は北海道開発庁の依頼により実施されたものであつて、野外調査は昭 和31年から昭和32年にかけて行なわれ、室内作業は引続き地質調査所北海道支所におい て行なつた。なお、野外調査に当つては、図幅地域の北半部すなわち追分図幅寄りの地域 は主として松野が、南半部は石田が担当して調査を行なつた。

この図幅の調査に当つて,採集した有孔虫化石の鑑定は,東北大学理学部地質学古生物 学教室の浅野清博士および高柳洋吉博士に依頼した。

既成の5万分の1地形図にあらわされた地形が著しく実際と異なる箇所が多いため,踏 査図には約35,000~40,000分の1の縮尺の空中写真に基づいて作成した河川図を用い,地 質図の最終取りまとめに当つては,本図幅の東半部は空中写真から図化された地理調査所 による25,000分の1地形図を50,000分の1に縮図したものを用い,西半部は既成の50,000 部1) 分の1地形図を用いて両者を接合して本地質図幅を作成した。

また,図幅地域の西縁部に当る早来丘陵地のうち,熊の頭山より西側の区域は駐留軍お よび自衛隊の共同使用の射撃場であるため,立入り調査について制限があり,他地域に比 して調査の精度の著しく劣ることを附記しておく。

I 地 形

本図幅地域は,東に遠く日高山脈をのぞみ,西は札幌一苫小牧低地帯を距てて,支笏洞 爺国立公園の山々と対峙する位置にある。南は広大な勇払原野を距てて太平洋が望見され る。

この地域は、新第三紀の堆積岩および第四紀の段丘堆積物、冲積層およびこれらを覆う

註2) 早来市街地北部で安平川以西の丘陵性山地を早来丘陵地と仮称する。

註1) 接合部分は幾分不正確であることは否めない。なお,既成の 50,000 分の1 地形図の西半部も実際の地形と多 少差異があることを付記する。

火山灰からなり、火成岩は全く認められない。このため地形は全般的に低平で、標高400 mを超えるのは僅かに地域北東隅の一部のみである。これを細かくみると、3つのそれぞ れ特徴ある区域に分けることが出来る。すなわち、図幅地域東半部の標高170~180 m以 上の山地、中央部のほぼ160~170 m以下の数段の段丘によつて形成される地域、および 西縁の札幌一苫小牧低地帯の一部をなす地域である。これらをそれぞれ東部山地、中央段 丘地域および西部低地帯とし、以下これらの地形について記述する。

東部山地は支安平から宇久留を経て軽舞にいたる線より東部の地域であつて,主として 軽舞層およびこれより古い振老層によつて構成され,標高は170~180 mから400 mに達 するが,北東部に高く南西に逐次標高を減少する傾向をもつている。この地域は地形的に 壮年期ないし満壮年期の地ぼうを呈し,比較的顕著な山稜とこれを刻む比較的急峻なV字 形の谷とからなつている。全般的に谷の密度が大きく,各河川の支沢は前述の山稜に直交 して櫛歯状に発達する。山稜の顕著なものは主として硬質頁岩――時には礫岩,砂岩―― によつて構成され,背斜,ドーム構造,向斜あるいは断層等の地質構造を反映させている。 近悦府沢上流で硬質頁岩からなる山稜は頗美宇ドームの構造が地形によく顕われている好 例である。

中部段丘地域は前述の東部山地の西側に接し、その西限は図幅地域の北西隅、すなわち 早来丘陵地の西側から湯の沢を経て当麻内に連なる線上にある。

この地域は主として萌別層によつて構成せられており,いわゆる段丘地形を呈する地域 である。すなわち,この地域には古いものから順に、80~130 m(第 II 面),35~80 m(第 II 面), 25~40 m (第 IV 面) の3 つの明かな平坦面が認められる。このほか 140~180 m の定高性 をもつ台地性の山稜----早来丘陵地の熊の頭山およびこれに連なる山稜,早来市街地南方 の三角点 163.7 m の存在する山稜および支安平から近悦府,宇久留を経て軽舞に至る線に そつて認められる山稜など---が存在する。この 140~180 m の定高性をもつ山稜は,か つての古い平坦面と考えられるが,開析が進み地形上にその痕跡を残すのみで堆積物等の 確証は未だ得ていない。上記の平坦面は数次にわたる火山灰・火山砂および火山礫等の火 山砕屑物によつて被覆されている。

西部低地帯はいわゆる札幌一苫小牧低地帯の東縁部にあたり、前述の火山砕屑物によつ 註2) て構成されている 10~20 mの極めて平坦な台地と この間に広く発達する湿原 とから な

註1) 本文ではこの定高性の台地を第I面として取扱うが地質図においては表現を省いてある。

註2) この平坦面は陸上堆積の火山砕屑物のみによつて構成せられており、前述の段丘と同一に扱えない(後述する)。

る。この湿原中には遠浅沼をはじめ大小の沼が点在する。基盤をなす新第三紀層はこの地 域においては地表で全く認められない。

本図幅地域内の河川は厚真川および安平川の水系に属する。何れもこの図幅地域から南 下し、南に接する鵡川図幅を経て太平洋に注いでいる。厚真川は東に接する穂別図幅地域 内にその源を発し、北々東一南々西の流路をとつて本図幅地域内に入り、中央部を横断 し、厚真市街地南方で方向を変えて南下する。その支流の主なものは、ショルマ沢、幌内 沢、チルク沢、頗美宇沢、宇久留沢および軽舞沢等である。安平川は北隣の追分図幅地域 内に端を発し、図幅地域の西寄りを北から南に縦断している。安平川は極めてゆるい河川 勾配をもち、早来市街以北では殊に蛇行が著しい。また低平な段丘地帯にあつては、支安 平川以外に特筆すべき大きな支流はない。

次に本図幅地域内に発達する平坦面について述べる。これらの平坦面はその高さから次 の5つの面に分けられる。すなわち

- 1) 第 I 面 140~180 m+
- 2) 第**Ⅱ**面 80~130 m
- 3) 第Ⅲ面 35~ 80 m
- 4) 第Ⅳ面 25~ 40 m
- 5) 第**V**面 冲積面

である。

第 I 面は前述のように 80~130 m 面──第 II 面──より 更に一段と高い 140~180 m+ の面であり 2 地域に見られる。しかし、この面は定高性をもつ稜線からその存在を推測さ れるが、開析が進んでおり堆積物の存在を実証するに至つていない。

第Ⅱ面は早来丘陵地の西部に伸びる線と,支安平から厚真川を経て軽舞沢中流に至る地 域に見られる面が相当する。この面は北隣追分図幅地域にも,また,南隣鵡川図幅地域にも 部)³⁴⁾ 連続して認められる。この面も第Ⅰ面と同様に開析が進み,かつまた,厚い火山灰に覆わ れており,僅かに支安平から軽舞沢にかけての地域で,堆積物が認められたにすぎない。

第 ■面は第 ■面は第 ■面の前面にかなり広範囲に分布し2地域に発達する。一方は当麻内から厚 真市街地附近をこえて、早来丘陵地の西部に北北西——南南東方向に分布するものと、他 方はその亰に早来市街地から安平にかけてほぼ南北方向に分布するものとが見られる。前 者は鵡川図幅の第 ■面に連続するが,一方,後者の北方延長は追分図幅地域中にも広範囲に 34) 認められる。しかし、前者が堆積面と考えられるのに対し、後者はむしろ侵蝕面であつて 殆ど堆積物が認められない。両者ともそれぞれ数次の降灰による火山灰および二次的に高 所から押し出されて再堆積したと思われる火山砕屑物によつて覆われており、上位の面と の境界の識別が判然としない地域も多い。

第**Ⅳ**面は第**■**面の前面に狭長な分布を示し、かなりの平坦面が残存している。早来市街 地西南方の下安平以南では、その堆積物が処々に見出だされるが、その以北では厚い火山 灰に被覆せられ、堆積物は殆ど認められず、僅かに地形上からその面の存在が推定される にすぎない。

以上述べた各平坦面の旧汀線は札幌一苫小牧低地帯の方向に平行であつて,洪積世末ま で海峡であつたこの低地帯の旧汀線に当るものと考えられる。

河岸段丘は厚真川およびその支流の頗美宇沢その他に沿つて発達し、僅かの高低差をも ま1) つ数段の面が認められる。これらの河岸段丘と前述の平坦面との関係はその分布が極めて 断片的なため詳かにすることができない。

第 V 面は札幌一苫小牧低地帯の冲積面である。この面は現在の海面からの高距は僅かに 10 m ないしそれ以下であり、多くの沼とこれを取りまく広大な湿原とが発達する。

この図幅地域西部を含む低地帯に広く極めて平坦かつ広大な海抜10~25 m の台地が発 達することは前に述べたとおりである。この台地はすべて火山灰によつて構成されてい て、その基底部は地表では観察し得ない。しかし、この火山灰は後述するように陸上に堆 積したものと考えられること、また鵡川図幅地域内において、第17面より一段低く冲積面 より一段高い面が知られており、現在この面の大部分は冲積平原下に没しているものと考 えられることからおして、火山灰台地はこの面上に形成されたものとしてよいであろう。

II 地 質

II.1 概 説

本地域は全体を通じて,新第三紀および第四紀の堆積岩が分布し,火山灰を除いて火成 岩の分布は全く認められない。

新第三系は下位から上位に整合一連の関係をもつて累重するトニカ層,振老層,軽舞層 および萌別層からなり,第四系は少なくとも4段の平坦面を形成する段丘堆積物,洪積期 末の火山灰,冲積氾濫原を形成する冲積層および極めて新期の火山灰,湿原の堆積物など からなる。これらの層序関係を模式的に示すと第1表地質総括表のとおりである。

第1表 地質総括表

時	代	層		序	層厚 (m)	岩	相	備	考
第	現世	火冲	山 積	灰 層		浮石 砂, 礫,	粘土	←— 火成活動	(降灰)
四紀	更新世	~~~~ 火 段	山 丘堆積	灰 層		浮石,火 山礫 砂,礫, 粘土,沥	く山砂, 火 シルト, 己炭	 ← 火成活動 ← 地盤の上 運動 	(降灰) 昇および撓曲 用
新	中	萌	別	層	1400 +	砂質シル 礫岩 砂岩シル シルト岩 硬質頁岩	 ・ト岩 ・ト岩互層 = 砂岩 = 五層 	造構造運 — 海棲軟体	動 { 断層 褶曲 動物化石
第三	新	軽	舞	層	600 ₹ 1100	硬質頁岩 砂岩泥岩 硬質頁岩	+ + 互 層 	一中新世有 <i>Cyclam</i>	孔虫化石 <i>mina</i> spp.
紀		振	老	層	800 2 1300	礫岩砂岩 砂岩泥岩	吉五層 吉五層	海棲軟体	動物化石
	世	۴	ニカ	層	80 +	硬質頁岩 凝灰角磷	; ^後 岩	← 一 火成活動	

本図幅地域は樺太の西部から宗谷海峡を経て,北海道の脊梁山脈――日高山脈――の西 9) 側を南北に走る樺太一蝦夷第三紀褶曲帯の南部に当り,ここに分布する新第三紀層は南北 性の軸をもつ雄大な背斜・向斜をくりかえしている。この地域を含めて四近の褶曲構造を 通観すると,東ないし北東方脊梁山脈に近づくほどその構造が複雑,かつ,地層の傾斜も 急となり,しばしば地層のじよう乱が激しくなる。これと反対に西ないし南西方に脊梁山 脈から遠ざかるほど,単調でかつゆるやかになる傾向をもち,併せて新しい地層ほど西な いし南西方に分布している。

新第三系が地表上で見られるのは、この図幅地域では東部山地から中部段丘地域までで あつて、これより西方の低地帯に入ると冲積面下に没する。

本地域新第三系の最下位の地層であるトニカ層は、本図幅地域で頗美字ドームの軸部に

僅かにその頂部が認められるだけである。

トニカ層に引続いて堆積した振老層は,天塩地方の増幌層あるいは古丹別層,夕張地方 20) 28) 28) の川端層,日高地方のアベツ層あるいは受乞層などと全く同様の岩相を呈し,全般的に単 調な岩相からなるが上部では礫岩・砂岩および泥岩の周期的な互層が発達する。かつ,地 層の厚いわりに全くといつてよい位に大型化石を産しないという特徴をもつている。振老 層は上述諸地方の地層と同じく,東方の脊梁山地の著しい隆起とこれに伴うその前縁部の 沈降とによつて形成されたものと考えられる。したがつて,東部ほど粗粒堆積物が著しく, かつ,地層の厚さも厚く,逆に西方に向つては礫岩・砂岩の量を減じ泥岩がちとなり,地 層の厚さも薄くなつている。本層および前述のこれと同層準の地層は,北海道における重 要な含油層準として注目されている。

振老層の上位に整合に累重する軽舞層は、その岩相から下部硬質頁岩、砂岩泥岩互層お よび上部硬質頁岩に3分される。下位の振老層およびこれら三者の重なりを見ると、各々 の境界部において指交関係が認められるところも少くないが、比較的安定した岩相と広が りをもち、その岩質から振老層が含油層であるのに対して、軽舞層は帽岩として極めて重 要な役割りをもつている。軽舞層は富川地域の二風谷層にほぼ対比されるものと思われる が、二風谷層は岩相変化が激しく、かつ、礫岩・粗粒砂岩等の粗粒物質が多く層厚も著し 340 く厚くなつている。また、追分地域においては上部硬質頁岩のみが馬追山層に連続し、軽 舞層の中部の砂岩泥岩互層および下部硬質頁岩は川端層と異相関係にあることが明らかに されている。

振老層および軽舞層はその産出有孔虫化石動物群から中新世中葉から後葉にかけての堆 積物と考えられる。

萌別層は本地域に分布する新第三系の最上部の地層であつて、下位の軽舞層と極めて漸 移的な関係――あるいは一部側方に指交する――にあつて非常に不安定な堆積状況を示し ている。すなわち、本層はそれぞれ特徴ある4つの岩相に分けられ、岩相変化が激しく各 岩相間の境界は著しく堆積時間面と斜交する。このような特徴はこの地域から日高地方の 海岸にかけて分布する同層準の地層――富川地域の荷菜層、静内図幅地域の厚賀層および その直下の元神部層等――についてもいい得るところであつて、各地域ごとの岩相区分に よる層序関係をもつて全体に適用することは不可能に近い。本層の地質時代については、 下部に中新世の有孔虫化石を産するのみで、上部については古生物学上の資料は全くない。 第四系は前述のとおり、更新世の段丘堆積層および火山灰、現在の冲積氾濫原堆積物、

湿原堆積物などである。更新世の段丘堆積層中第 Ш面を構成する堆積物中には海棲動物化 石が認められる。また,更新世の火山灰は各段丘面をおおい,冲積面に切られることから 更新世末の噴出と考えられ,現世の火山灰は現河床氾濫原を除いて地域全体をおおうこと から極めて新期の噴出と考えられる。

II.2 新第三系

II.2.1 トニカ層

トニカ層は本図幅地域内における新第三系の最下部をなす地層であつて,厚真川とその 支流の頗美字沢との合流点附近に僅かに露出するにすぎない。すなわち,頗美宇背斜の軸 部にその最上部の硬質頁岩およびこれに挾有される安山岩質凝灰角礫岩が認められるだけ であつてその下限は不明である。

硬質頁岩は露出面では灰白色を呈し、緻密堅硬で非常に凝灰質である。さらに風化が進 むと表面が赤褐色となり、不規則な片状となつて崩壊する。

安山岩質凝灰角礫岩は帯緑黒色を呈し、やや風化の進んだところでは緑灰色となり一見 緑色砂岩のような外観を呈する。さらに風化が進むと黄褐色となる。角礫は主として普通 輝石・紫蘇輝石安山岩に属する類質の亜角礫である。基質は火山砂および火山灰質で斜長 石,輝石類の結晶片を伴つている。また、この凝灰角礫岩は無数の石英の細脈によつて貫 かれている。

本層は前述のとおり全ぼうを明らかにし得ないが、安山岩質凝灰角礫岩を挟有する硬質 頁岩層を最上部とし、その下位に海棲軟体動物化石を産する層準があること、および後述す るアベツ層および川端層と同層準である振老層の下位に恐らく整合関係に横たわるという 26) 120160170340 事実などから、平取地域の栄層あるいは滝の上層に対比されるものと考えられる。従来本 層は振老層の下部とされていた。

II.2.2 振 老 層

振老層は図幅地域北東部の平取背斜およびこれから順次西南方のヤチセドーム、 顔美宇 ドーム、字久留ドーム等の軸部に分布し、古くから同層準の地層とともに北海道の含油層

註1) 新称。

4) 準の一つとして注目されている。本地層名は大村一蔵による。

本層の下限は、トニカ地域以外では認められない。ここでも本層と下位のトニカ層との 関係は観察することが出来ないが、周辺地域においてこれら両層準に相当する地層が何れ ²⁽¹⁾²⁸⁾³⁴⁾ も整合関係にあることから推して同様な関係にあるものと考えられる。

本層は全般的に極めて単調な岩相、すなわち、主として規則的な砂岩・泥岩の互層から

なるが、下部と上部とで若干の差が認められる。下部は砂岩・泥岩の互層からなり、殆ど 礫岩を挾有しないが、上部に行くと互層中に礫岩が介在し、かつ、泥岩に比べて砂岩の量が かなり多くなり、礫岩・砂岩の互層を主体とする岩相を呈するようになる。礫岩・砂岩・ 泥岩の量比はところによつて異なるが、全般的には東部ほど砂岩ないし礫岩の量が多く、 かつ、地層の厚さも厚く、逆に西に行くに従つて粗粒の堆積物は少くなり、地層の厚さも 薄くなつている(第2,3図)。

以下振老層の前述の2区分された岩相について述べる。これら両岩相は互に側方に移化 し合う場合も少くない。なお,砂岩泥岩互層の上部には4~6枚の凝灰岩が発達する。

砂岩泥岩互層は振老層の下部に当り、極めて規則的な互層をなしている。

砂岩は暗灰色ないし青灰色を呈し、おおむね細粒ないし中粒であつて稀に粗粒なものも ある。その構成物は主として粘板岩および珪質岩の粒からなり,時に輝石粒を混えている。 固結度も著しく変化し、非常に堅硬なものから、比較的粗鬆軟弱なものまである。板状の

第2図 平取背斜東翼部柱状図

第3図 平取背斜西翼部柱状図

砂岩層中にはしばしば炭質物の粒が層理に平行に配列し,黒い縞模様を呈する場合がある。

泥岩は暗灰色ないし黒色を呈し、板状をなして成層するものと塊状のものとがあり、粒 度は緻密粘土質のものからシルト質ないし砂質のものまで種々ある。

前述のとおり、本互層の下限は頗美宇ドーム地域でしか観察されないが、本互層全体を 通観すると、砂岩および泥岩は級化互層をなし、概して下部ほど泥岩が卓越し、上部では 砂岩の量が多くなつている。すなわち、下部はシルト岩ないし泥岩1~3mに対して細粒 砂岩5~20 cmの互層をなし、上部は砂岩・泥岩が等量に近い細互層を示している。一方、 本図幅地域東限ショルマ沢においては、すでにこの互層部と同層位のところから礫岩が出 現している。

また本互層中にしばしば層間異常(層間褶曲, slumping sheet, ball) が認められ,そ の顕著なものはショルマ沢中流 および紋別沢上流 において発達し,同一層準 にかなり広 範囲に 追跡される。本互層中の 泥岩から *Cyclammina* spp. その他の有孔虫化石 および *Makiyama* sp. を産する(第4図および第2表)。

凝灰岩は幌内背斜およびショルマ向斜の西翼に 4~6 枚認められ,有効な鍵層として追跡 される。しかし、これらの凝灰岩は各々に特徴がなく、また厚さも一定せず、地域々々で 岩相も異なり,それぞれを識別することが困難であるため,調査に当つては着実に追跡して 行く以外に方法はない。その発達の状態は北方に向つて著しく、北隣追分図幅地域内では 2028) 顕著であるが、本図幅より南方では同層準の地層中に殆ど認められなくなり、本図幅でも 平取背斜西側の頗美宇ドームでは発達が極めて悪い。

岩質は暗緑灰色ないし青灰色泥質凝灰岩・黄褐色細粒凝灰岩・褐色粗粒凝灰岩・褐灰色 砂質凝灰岩あるいは暗緑灰色緻密泥質凝灰岩と著しく変化する。

礫岩砂岩互層は前述の砂岩泥岩互層の上位に、これを取りまいて分布する。本互層はお おむね前述の砂岩泥岩互層中の最上部の凝灰岩の約150m上位から始まるが、背斜の東翼 あるいはさらに東方ショルマ向斜の両翼では凝灰岩帯の中部あたりから既に礫岩が出現 し、同時に砂岩も多くなつている。

この礫岩砂岩互層は礫岩・砂岩を主とし,泥岩あるいは硬質頁岩を従とし,礫岩から漸 移的に砂岩・砂岩泥岩(あるいは硬質頁岩)互層という順序で重なる典型的な堆積周期を 繰り返している。

確岩は主として黒色粘板岩の礫からなり,硬い砂岩・硅質岩および片岩の礫を混え,外 観は黒色に近い色彩を呈する。礫の大きさは一般に指頭大ないしクルミ大であるが,稀に は拳大に達するものもある。これらの礫は亜角礫からよく水磨された円礫まで種々雑多で あり,時には第三紀層から由来したと考えられる泥岩の大塊が認められる。礫岩の膠結物 は同質の砂あるいは泥からなり,碟とその量比も非常に多様であり,固結度も高低様々で ある。

この礫岩の著しい特徴は一般に基底部で最も粗粒であり、上方へ次第に粒度を減じ砂岩 に移化していることと、礫の長径が一定方向をとるとかあるいは層理、偽層などの内部構 造が全く認められないことである。

註1) 極端なものは、泥岩中に礫が点在する程度のいわゆる含礫泥岩となる。

砂岩は礫岩の上位にあつて礫岩から移化するものと、泥岩と互層するものとがある。後 者は板状かつ一般に細粒であつて前述の砂岩泥岩互層中のものと全く変らない。前者,す なわち礫岩の上位に漸移的に重なる砂岩は一般に粗粒ないし中粒であつて塊状を呈し、し ばしば振老層のものと思われる砂岩・泥岩あるいはそれらの互層からなる礫あるいは岩塊 を含んでおり、かつ、石灰質団塊を含んでいる。

泥岩は砂岩と互層して存在し,下位の砂岩泥岩互層中のものと区別出来ない。硬質頁岩 は砂岩および泥岩と互層し,本互層の最上部に多くはレンズ状を呈して存在し,遂には軽 舞層の下部の硬質頁岩に移化する。

これら泥岩,硬質頁岩中には Makiyama sp. および有孔虫化石が肉眼で認められる(第 4 図および第2表)。

確岩砂岩互層は全体的にみて、東部では粗粒堆積物が多く、かつ、地層が厚くなつているが、南西に行くに従つて礫岩の量は漸次減少し、字久留ドームの西翼では全く礫岩が認

まい

おられなくなり粗粒砂岩がこれに代っている。

前述のように振老層は北に連続する川端層,南東延長部に当るアベツ層などとともに, 地層の厚い割合に上下を通じて単調な岩相を示し,有孔虫化石および Makiyama sp. の ほかに底棲の動物化石を全くといつてよい位含まず,炭層,植物化石あるいは偽層その他 の浅海を示す証拠も全くない。さらに前述したように層間異常あるいは乱堆積の存在,含 礫泥岩の存在などから,堆積過程中一旦沈積した堆積物の二次的滑動がしばしば行われた ものと推察される。また,すでに述べたとおり,東部ほど粗粒堆積物が卓越し地層の厚さ も厚いことから,その堆積物の供給源は東方にあつたものと考えられる。

本層の地質時代については、その産出有孔虫化石から中新世であることは疑いない。

II.2.3 軽舞層

軽舞層は東部山地にもつとも広く分布するほか,図幅地域の北西部,熊の頭山附近にも 分布する。本層は硬質頁岩を主としており,地層名は1928年大村一蔵の命名によるもの

- 註1) 更に南西,図幅地域外,鵡川背斜の試錐の岩心を観察する機会を得たが、ここではさらに細粒の砂岩と泥岩との互層からなつている。
- 註2) これらの地層と全く同様な堆積状況を示す地層が、維内付近から北海道の中軸帯の西側に発達している。今ここに述べた地層はその南部のものであるが、北部では増幌層あるいは古丹別層と呼ばれる地層がこれに当る。これから知られた底棲大型動物化石は、本地域メナ沢、静内図幅地域の厚別川ブケマ付近、追分図幅西端の馬追山の西質だけにすぎない。これらはいずれも細粒酸岩中に密集して産するものであるが化石帯としては追跡できない。Akebiconcha sp. らしい体長 10~15 cm の二枚介がいずれの産地においても圧倒的に多い。これは新属の 疑いもあり如井小虎博士によつて検討中である。

であつて,標式地は図幅地域南部の厚真(旧振老)南部である。

本層は岩相から、下部硬質頁岩、砂岩泥岩互層および上部硬質頁岩に3分される。これ ら3者の関係は漸移的であり、また、各々の境界部において一部側方に移化し合うところ があつて明確な境界は決定し難い。また、下位の振老層との境界も同様であつて、硬質頁 岩が多量に出現するところをもつておおむね両者の境界とした。本層の全層厚は図幅地域 の南東部で厚くほぼ1,100 m 前後もあるが、北部では薄くなり 600 m 程度となる。

下部硬質頁岩はメナ沢から頗美字沢にかけて特に著しく発達し,振老層の礫岩砂岩互層 から漸移している。本層は一般に厚さ数 cm から 10 数 cm の硬質頁岩と 2~5 cm の泥岩 ・シルト岩あるいは細粒砂岩との互層からなり,あたかも煉瓦を積み重ねたような見事な 露出面を形成する。硬質頁岩は一般に灰色ないし暗灰色を呈し堅硬緻密であり,また,と ころによつては建質となつている。粒度は粘土からシルトまで変化する。露頭では一般に 赤褐色ないし鉄銹色を呈し,風化が進むと灰白色の角片状あるいは葉片状の破片となつて 崩壊する。泥岩あるいはシルト岩は暗灰色を呈し,風化して灰色の小片となる。

本岩相下部は一般に砂質を帯びる硬質頁岩からなり、シルト岩および細粒砂岩を挾有し ているが、幌内附近においては硬質頁岩と板状堅硬な細粒砂岩と互層しており礫質砂岩も 見られる。中部は典型的な硬質頁岩からなり板状層理が特に著しい。メナ沢では硬質頁岩 中に約1m前後の細粒砂岩が挾在する。上部は硬質頁岩と細粒砂岩との互層からなり、ま た、石灰質団塊を含有する。

砂岩泥岩互層はメナ沢附近から北はヤチャ沢、南は軽舞油田および西では早来丘陵地で アウサリ背斜の軸心にかけて広く分布しており、前述の下部硬質頁岩から漸移する。両者 の境界は極めて不明確であつて、硬質頁岩と砂岩・泥岩との量比が両者の区分の一応の目 やすにすぎない。すなわち、硬質頁岩の量より砂岩・泥岩あるいはシルト岩の量が卓越す るところをもつて境界としている。

砂岩は中粒ないし細粒で青灰色あるいは暗灰色を呈し、泥岩あるいはシルト岩は暗灰色 を呈する。砂岩と泥岩とは級化互層(graded alternation)し、ところによつては両者の 量比に差がある。すなわち、幌内沢流域では砂岩よりシルト岩が多く、西方チルク沢では シルト質泥岩と細粒砂岩とがほぼ等量の5~10 cmの互層となり、さらに紋別沢において は両者とも15~20 cmの厚さとなるとともに砂岩の粒度も粗くなる。軽舞採油所附近で は本岩相は砂岩・泥岩の等量の互層をなし、互層中の細粒砂岩中に多量の雲母粒を含む部 分があり、当麻内沢上流では、炭質頁岩を挟有しているのが認められる。このほか、メナ 沢附近で本層中に厚き数 m の殆ど黒色粘板岩 および 建質岩の礫からなる細粒砂岩が認め られ,支安平川の支流シュンベ沢では灰白色の凝灰岩が認められる。全体的にみて本岩相 下部は硬質頁岩と細粒砂岩の互層,中部は主として砂質頁岩で砂岩と互層をなし,上部は 再び硬質頁岩が多くなり,泥岩あるいはシルト岩および砂岩と互層している。

上部硬質頁岩は幌内方面から宇久留沢を経て軽舞沢に至る地域に広域に分布し,また知 決辺沢上流以北および西老軽舞附近,さらに早来丘陵地およびその南方延長に分布する。 硬質頁岩を主とし,泥岩あるいはシルト岩および砂岩を従とする互層からなり板状層理が 著しい。下位の砂岩泥岩互層との明確な境界はなく,極めて漸移的である。すなわち,砂 岩泥岩互層が上方に砂岩の量を減じ,これにしたがつて互層中に硬質頁岩が漸次量を増し て遂には前述のような硬質頁岩とシルト岩ないし泥岩との互層となる。

図版1 上部硬質頁岩の板状層理(宇久留沢中流)

本岩相下部は大部分が硬質頁岩 10~30 cm, シルト岩ないし泥岩 2~5 cm の典型的な板 状互層である (図版 1)。ただオコウコ沢においては,厚き数 m の青灰色板状細粒砂岩が認 められるが,他の地域では著しくない。また中に径 30 cm 前後の石灰質団塊を含む部分も ある。中部は砂岩が少く,おおむね硬質頁岩とやや軟質のシルト質泥岩との互層からなつ ているが,岩相の側方変化が激しい。また,宇久留沢附近では本層中部に白色凝灰岩や珪質 頁岩,細粒砂岩が介在するのが認められる。上部は幾分シルト質の硬質頁岩からなり,上 位になるにしたがつて砂岩を介在するようになり,徐々に萌別層のシルト岩砂岩硬質頁岩 互層へ移り変つて行く。なお,本岩相中の硬質頁岩の岩質および性状は,下部硬質頁岩と 全く同様である。

第2表 振老層,軽舞層および萌別層産有孔虫化石表

地		-±×	R	1					轁	5	27E						舞								層						1 38 5	山國
種 名	828	1829	1836	下 817	部 1	更質 953	頁:	岩 977	525	砂 1571	759	불 819	泥	岩 1871	894	互 1937	層 947	969	535	765	- 782	部 784	791	硬 820	留1862	879	頁 1885	887	岩 1895	906	544	月月1925
"Ammodiscus incertus (d'ORBIGNY)"	R			R		F			F	R	R	R	R					000	000		R	F	R				R			C	011	1020
Bathysiphon sp.									<u> </u>					-		-		-							A							
Biloculinella sp.												1		-	R	-	-	-														
Cibicides aknerianus (d'ORBIGNY)												1			A	-											-					
Cyclammina cancellata BRADY	A			R		A			Α	R	С	R		R	A		F		С	С	С	С	R	R	F	R	R	R	A	С	Α	R
C. cf. cancellata BRADY											福	-		R		R																
C. ezoensis Asano		R									R											R								R	Α	
C. incisa (STACHE)					R			R			1		С	R	R	R	X	С					0			R						
C. japonica ASANO	С	R							F		С		A	R					F	R		R				R	R				С	R
C. pusilla BRADY									R		一個		С																			
<i>C</i> . sp.			R				R				F		A		R									R								
Elphidium sp.																			R													
Globigerina cf. bulloides d'ORBIGNY											Sain				R																	
G. dissimilis CUSHMAN and BERMUNZ											調視				R																5	
<i>G</i> . sp.															R					·												
Globigerinoides triloba (REUSS)											何何				R																	
<i>G</i> . sp.											and a				R																	
Globorotalia sp.												1			R																	
Gyroidina sp.															R		R															
Haplophragmoides renzi Asano													A																			
H. cf. trullissatum (BRADY)													A			R																
<i>H</i> . sp.	F			R					R			A	A			R		R	R													
Nonion pompilioides (FICHTEL and MOLL)																						R										
Nonionella sp.															R																	
Quinqueloculina sp.																								R						- 2		
Trochammina sp.												1		R																13		

註 A: Abundant C: Common F: Few R: Rare

第4図 有孔虫化石産地

. 15

軽舞層は全体を通じて大型化石の産出が極めて稀であつて、僅かに Portlandia kakimii Uozumi および Macoma sp. その他の軟体動物化石数個体が採集されたにすぎない。一 方,有孔虫化石は少いながらも全層にわたつて認められる(第4図および第2表)。

これについては土田定次郎の報告がある。これから軽舞層の地質時代は中新世,その層 位上の位置からおそらくその後期であろう。

II.2.4 萌 別 層

萌別層は中部段丘地帯に広く発達するほか,図幅地域の南東部,さらに地域西端アウサリ 背斜の西翼にも分布している。標式地は南隣鵡川図幅地域内勇払郡鵡川町萌別である。本 地域および近接地域を含むいわゆる勇払油田に対しては古くから多くの調査があつて,そ の新第三系上部の地層区分についての解釈に種々異論があり,地層名についても著しい混 (33) 乱が認められる。ここに述べる本層は,山口昇一により再定義された萌別層に連続する。

本層は中部段丘地域に一つの大きな向斜構造を形成している。このほか図幅北西部フモ ンケの東部にほぼ南北性の走向を示して、細長く分布している。しかし、これらは段丘堆 積物および火山灰により厚く覆われており、地表に露出の見られるところは非常に少い。 本層の層厚は上限が不明であるが1,400 m以上である。

本層はその岩相から,シルト岩砂岩硬質頁岩互層,砂岩シルト岩互層,礫岩および砂質シ ルト岩と4つの特徴ある岩相に区分することができる。これら各岩相の境界面は,時間面 とは全く無関係な場合が多く,相接する両岩相の間には著しい側方への移化が認められる。

シルト岩砂岩硬質頁岩互層は軽舞沢上流から宇久留沢上流およびチルク沢上流にかけて 広く分布するほか,軽舞沢中流を切る厚真断層附近に小範囲に露出する。下位の軽舞層の 上部硬質頁岩とは完全な漸移を示しており,両者の厳密な境界は決め難い。すなわち,軽 舞層の上部硬質頁岩中のシルト岩および砂岩がその量を増し,等量の互層を経て,遂には 硬質頁岩を含まなくなる。したがつて,両者の境界はこれらの量比を一応の目安として定 めた。

本互層下部は主として暗灰色板状硬質頁岩と暗灰色ないし灰色の細粒砂岩との互層から なり、やや凝灰質の青灰色シルト岩の薄層を伴つている。中部は暗灰色ないし灰色のシル ト岩および砂岩の互層を主としており、暗灰色硬質頁岩は比較的その量が少い。上部はシ

註1) 山口は鶴川礫岩(鶴川蛮岩)と萌別層とは岩相区分は可能であるが、時間的層序区分は不可能であるとして両 10 者を一括して萌別層としている。ところで根本忠寛らの萌別層は同名の異層で、富川図幅の二風谷層(三軽舞層) の異相であり、新生界対比委員会札幌支部の鶴川礫岩層は、前述の根本らの萌別層と標式地の鶴川礫岩を一緒に して扱つているものと思われる。

ルト岩を主とし,砂岩および硬質頁岩の薄層を挟有している。シルト岩は概して灰色であ るが,次第に黄色を帯びて凝灰質ないし珪藁質となる。細粒砂岩は一般に灰色ないし黄褐色 を呈し,主として塊状であるが時には板状をなしており,炭質物を挟有するところもある。

砂岩シルト岩互層は図幅地域の南東隅および厚真断層以西に分布している。南東隅にお いては、前述のシルト岩砂岩硬質頁岩互層から漸移してほぼ上位に累重する。本互層はほ ぼ等量の細粒砂岩と青灰色ないし灰色のシルト岩とが互層をなし、泥岩および硬質頁岩を 挟有するが硬質頁岩の量は非常に少ない。厚真断層西方で挟長に発達する本互層において は、字久留沢以南ではシルト岩砂岩硬質頁岩互層のほぼ上位に来るが、字久留沢から北方 にかけては下位の岩相が礫岩に移り変つているため直接礫岩と接している。なお、この礫 岩と接する地域においては、硬質頁岩は殆ど挟まれていない。また、本互層も下位の岩相 と同様に礫岩と指交している。本互層中の砂岩の中には雲母粒を多量に含有し、シルト岩 は黄灰色で珪藻質となつている。

礫岩は軽舞から近悦府および支安平川支流シュンベ沢の流域に分布し、さらに図幅地域 西部の早来丘陵地および厚真向斜西翼にも発達している。礫岩は砂岩シルト岩互層を挟ん で上下2層認められ,下位の礫岩(図版2)は北部シュンベ沢流域では軽舞層に直接累重す るが、厚真市街より南ではこの層準に礫岩が認められず,前述の砂岩シルト岩互層が存在 する。厚真市街からシュンベ沢の間ではこの礫岩層と軽舞層が直接するが両者の関係は断

図版2 萌別層の礫岩(厚真北々東道路切割)

層である。厚真向斜の西翼ではこの礫岩と軽舞層との間には,厚真市街南部と同様な砂岩 シルト岩互層が認められる。また,馬追背斜の西翼にも同様な礫岩が分布するが,前に述 べた東翼,すなわち厚真向斜の西翼と同様に,下位にシルト岩を距てて軽舞層を覆つてい る。これらは上下の岩層と互いに側方に移化し合い,かつ,厚さに著しい消長があり,厳 密に同一層準といい難い。

上位の礫岩は軽舞沢以北では,後述する砂質シルト岩と指交しながらも南北によく連続 して発達し,北に向うにしたがつてその厚さを増加しているが,軽舞沢以南では非常に薄く なる。一方,厚真向斜の西翼でははつきりしない。上下の礫岩はともに北方追分図幅地域 に入るとシルト岩中に消失し,僅かにその痕跡が認められるにすぎない。一方,南方鵡川図 ^{由1)} 幅地域内には上位の礫岩が連続して追跡される。礫岩は両者とも褐色ないし茶褐色を呈し ており,径2~5 cmのよく水磨された円礫からなり,礫は火成岩類,変成岩類および古期 水成岩類である。固結度は比較的低く,膠結物は細粒ないし中粒の砂である。

砂質シルト岩は厚真斜向を中心とする地域に広く分布するが,段丘堆積物および火山灰 に覆われて露頭は比較的少ない。本岩相は黄灰色の凝灰質ないし珪藻質の砂質シルト岩か らなり砂岩の薄層を挟有する。炭質物を多く挟む部分および雲母粒の特に多いところも認 められる。

以上のとおり岩相の側方変化が激しく,かつ,鍵層となるものも認められず,年代層序 による細分をなすことは不可能である。

本層からは海棲軟体動物化石を産するが、個体数および種数はともに著しく少なく保存 も悪いことから、これによつて時代を決定することはできない。

第	3	表	萠別	層産	軟体	動	物	七不	7

Acila sp. Nuculana sp. (sadoensis type) Nuculana sp. Venericardia sp. Thyasira bisecta (CONRAD) Macoma sp. Acmaea sp. Natica sp. Gastropoda gen. et sp. indet.

註1) 鵡川図幅における萌別層中部に位する礫岩は、この上部の礫岩とほぼ同層準のものである。

しかし、本層下部から産する *Cyclammina* spp. (第4 図および第2表) および本層と一 ²¹⁾ 連の関係にある由仁層の下部から報告された *Cyclammina japonica* AsaNo から、少なく とも本層の下部は中新世と考えられる。上部については確実な証拠はないが、平取地方の 荷菜層あるいは門別地方の厚賀層に相当するようにも考えられ、鮮新世とも考えられる。 II. 第 四 系

本図幅地域の第四系は,段丘堆積物,更新世末および現世の噴出物と考えられる火山灰 層, 冲積氾濫原堆積物および現在の湿原に生成中の湿原堆積物などである。

これらのうち,比較的末期に堆積した火山灰層およびこれらの流出に由来する二次的堆 積物が厚く発達するために,段丘堆積物の露出が極めて不良である。したがつて,これら 第四系相互の関係については,明確な資料がなく推定の域を出ない。ここにその推定の結 果を概念的に示すと次のとおりである。

第5図 第四系相互の関係概念図

II.3.1 段丘堆積層

第1段丘面はすでに地形の項で述べたように180m前後の定高性を示す山稜線であり, 平坦面はほとんど残つておらず,したがつて堆積物も認められない。

第 **I** 段丘堆積物は 80~130 m を構成する堆積物であるが,前述のとおり厚い火山灰層に 被覆され,かつ,これより高い山地に接するため,山地の斜面を覆つた火山灰の流出に由来 する二次的被覆が加わり,その露出状態は極めて不良である。したがつてこの堆積物の一

註1) 由仁層は従来の追分層を再定義したものである。

部と考えられる砂礫層が、断片的に数箇所において観察されたに過ぎない。

第 ■段丘堆積物は 35~80 m の段丘を構成する堆積物であるが、やはり厚い火山灰に覆 われている。しかし、僅かに数箇所の露出での観察であるが、本堆積物は礫・砂・シルト および粘土からなり、その堆積相はところによつて多少異なる。本堆積物には海成の証拠 がある。すなわち、早来市街地西方の鉄道切割りでは、ほとんど硬質頁岩のみの礫からな る礫層を挟有するシルト中に Ostrea gigas THUNBERG の化石の 密集帯が認められる。 このシルト中の有孔虫化石(第4表)は50 m より浅い海の群集と考えられる。しかし、 気候条件を示唆する種が認められず、これだけでは他地域との対比は困難である。

第4表 第Ⅲ段丘堆積層產有孔虫化石表

Bolivina striatula CUSHMAN Few	Few
Buccella frigida (CUSHMAN)	Abundant
Discopulvinulina cf. bradyi (CUSHMAM)	Common
D. cf. isabelleana (d'Orbigny)	Rare
Elphidium advenum (CUSHMAN)	Rare
E. etigoense HUSEZIMA and MARUHASI	Abundant
Fissurina cucurbitasema LOEBLICH and TAPPAN	Rare

第Ⅳ面は下安平から早来丘陵地西部にかけて分布し、主として植物片を含む青灰色の塊 状シルト質粘土からなり、その中に薄い礫層をはさみ、下安平においては 30~50 cmの泥炭 層が介在する。堆積物の基底は冲積面下に没し、下部は明らかではない。このような堆積 層から推察して、この地域は内湾あるいは潟湖のような堆積環境にあつたものではないか 注1) と思われる。

河岸段丘は厚真川の流域に多く見られるが,淘汰のよくない砂・礫および粘土からなつ ている。

II.3.2 火山灰

本図幅地域内は全域を通じて、火山灰によつて被覆されている。これらの火山灰は、札 幌一苫小牧低地帯の西方に位置する恵庭岳、樽前山等および支笏火山の火成活動に由来す るものである。各地における火山灰の状況は第5図のとおりである。

東部山地においては、当時の地勢が堆積に 不適当であつたうえに、2次的侵蝕、削剝も

註1) 地形の項で述べたように、鵡川図幅地域内において、この第Ⅳ面より一段低く、沖積面より一段と高い面が推定される。この面は第Ⅳ面形成後、沖積面形成前の面であるが、局部的なものかも知れない。

第6図 火山灰柱状図

図版 4 火山灰層(下安平)下位 P, Sは第3段丘堆積物 P……泥炭 S……シルト

あり残存するものは極めて少い。しかし、中部段丘地域,西部低地帯へと順次西方へ,す なわち,噴出源に近づくにつれてよく発達し、厚さも大きくなる。

火山灰はその外観および堆積状態により、上から a_o , a, b, c, dおよび e の 6 つに区分 することができる (第5 図および図版 3~5)。

火山灰 e は安平--早来間,早来ニタッポロ,下安平および源武の沢において見られ,層厚 はそれぞれ 200 cm+,200 cm+,300~400 cm および 100 cm である。主として黒色ないし 黒褐色で粒度は平均 0.5 cm 程度,すなわち,大豆から小豆大の安山岩質岩片からなり,斜 長石および輝石類も附随し,少量の淡褐色の軽石を混えている。下安平においては下部に 40 cm 前後の褐灰色ローム状浮石土および 30 cm 前後の後述する火山灰 c と同じ組成の胡 麻塩状の火山灰があり,下位の段丘堆積物を不整合に覆つている。

火山灰 d は火山灰 e の上に累重し,下安平および源武の沢等において見られ,層厚は下 安平では 100~150 cm を有するが源武の沢においては,15 cm 内外となつて薄く堆積して いる。黄色軽石,黄褐色ローム状軽石および火山灰質土を主とし,そのほかに少量の褐色 の火山砂を混えている。

火山灰 c は安平--早来間,早来ニタッポロ,馬追山南西縁附近,下安平と本図幅西半の 南北を通じて普遍的に認められる。淡黄灰色で軽石粒のほかに斜長石,石英,輝石の鉱物 粒が非常に顕著であり,胡麻塩状の外観を呈する。粒度は直径 2 mm 以下のものが多い。 層厚は早来ニタッポロ附近では,50 cm 前後であるが概して 100~200 cm である。風化は 進まず,したがつて粘土は殆ど含まれない。

火山灰 a は下位の火山灰 b との間には時間的間隙の存在が認められる。外観は灰白色な いし黄褐色で主として多孔質の軽石からなり,僅かに黒色の安山岩質岩片を混える。粒度 変化は著しく概して東方,すなわち,噴出源から遠ざかるに従つて細粒となり,かつ厚さも 減少する。また,この火山灰 a は数枚の黒色ないし黒褐色の腐植土をはさんでいる。

火山灰 a。は現河床を除いてほぼ全域を通じて分布しており、下位の a 以下とは著しい不 整合関係にある。比較的に細粒の灰白色の軽石からなり、黒色ないし黒褐色の腐植土をは さんでいる。

次にこれらの火山灰の噴出時期であるが,第Ⅳ段丘面上に火山灰 a,, a, b, c, d および eのすべてが堆積しているのが認められる。火山灰 b, c, d および e は区域内の河川に刻

計1)

⁸⁾ 註1) 火山灭 e, d, c および b は、それぞれ浦上啓太郎らによる勇払千歳洪積 G, F, E および B 火山灰層に相当 するものと思われる。

みこまれていることから,恐らく洪積期末の噴出に由来するものと推定される。最も新し い火山灰 a および a。は,前述のように現在の河床以外の地域全体を覆つていることから, 冲積世の極めて新しい時期の噴出と考えられる。

図版5 火山灰層(早来ニタツポロ) / 木炭片

II.3.3 冲 積 層

冲積層は低地帯および諸河川の主流に沿う地域およびその支沢に分布しており,氾濫原 堆積物および湿原堆積物がその主なものである。

氾濫原堆積物は厚真川,安平川,頗美宇沢,宇久留沢および軽舞沢等に沿つて分布して おり, 礫・砂・泥ないし粘土からなる。

湿原堆積物は図幟地域の西部の低地に広く分布している。主として草炭および泥炭質粘 土からなる。

これら冲積層の表面を覆つて,極めて新しい時期の火山灰(既述の火山灰 a および a。) が広く認められることは前述のとおりである。

II.4 地質構造

本図幅地域は初めに述べたとおり,樺太一蝦夷第三紀褶曲帯の南部に当つていて,第三 紀層は雄大な背斜,向斜をくり返している。これらの褶曲軸の主要なものは,ほぼ NNW-SSE 方向をとるが,本地域より南では NW-SE 方向となり,ほぼ北海道の脊梁日高山脈 の方向と一致している。これらの褶曲構造のうち,本地域に分布する第三系の地質構造を 大きく支配するのは北東から南西に、ショルマ向斜(12),平取背斜(2),厚真向斜(8) およびアウサリ背斜(1)である。これらのほか,顕著な構造として頗美字ドームを中心と して南北に雁行配列する厚真複背斜がある。

3 鵡川ドーム 1 アウサリ背斜 2 平 取 背 斜 4 軽舞ドーム 6 頗美宇ドーム 7 ヤチセドーム 8 厚真向斜 5 宇久留ドーム 11 築 別 向 斜 12 ショルマ向斜 9 芭呂沢向斜 10 清 畠 向 斜 15 ヤチセ向斜 16 ナ向斜 13 二風谷向斜 14 宇久留向斜 x 18 平 取 断 層 19 アウサリ断層 17 厚 真 断 層

これらの大きな褶曲構造に伴なつて、その方向と一致するいくつかの断層が認められ る。その主要なものは東から平取断層(18)、厚真断層(17)、アウサリ背斜に伴なう断層 群であつて、東から西へ向つての衝上性のものが多い。

褶曲構造

ショルマ向斜は域外北方延長は追分図幅の築別向斜となり,南方延長は穂別図幅を経て 26) 富川図幅の二風谷向斜に連なる少くとも延長100kmに達する一大向斜構造である。

平取背斜は従来,本図幅地域では幌内背斜と呼ばれていたもので,南方へ追跡すると富 26) 川図幅の平取背斜に連なり,北方では本安平背斜となる。幌内附近で沈下し,南方では再 び上昇し,幌内以南ではその軸部を後述する平取断層によつて断たれている。

厚真複背斜構造は南北に雁行配列するメナ向斜,ヤチセドーム,ヤチセ向斜,頗美宇ド (33) ーム,宇久留向斜,宇久留ドーム,軽舞ドーム,さらに域外南方にある鵡川ドームからな り,大きくみて厚真向斜とこれの南東,すなわち,部平取背斜の南西に位置する芭呂沢向 (計) 斜を距てる背斜部となつている。

厚真向斜は北方の追分向斜に連続するものであつて、南方延長は低地帯下に没して不明 20) である。しかし、前述の複背斜構造が芭呂沢向斜と、その南側の枝分れである清畠向斜と の間で消滅することから考えると、本向斜は大局的にみて、清畠向斜に連続するものと考 えられる。

アウサリ背斜は図幅地域の西部に位置し、北方延長は南北に追分図幅地域を縦断してい る。南方延長は厚真向斜と同様に低地帯下に没し全く不明である。この背斜はその軸と僅 かに斜交する南北性の断層群によつて断たれている。

断 層

平取断層は本図幅地域北東部を NW-SE 方向に走る 衡上性の断層で,従来幌内断層と 呼ばれていたものであり,北方延長は追分図幅地域まで伸び,南方延長は穂別図幅地域を 経て富川図幅地域の平取断層と連続し,さらに静内図幅地域に達する大断層である。平取 地域では大きな落差を示しているが,本地域内の幌内附近では僅少となり,NW 方向に漸 次またその落差を増す傾向を有する。

厚真断層は、本図幅地域をほぼ南北に縦断し、南に向うに従つて、NW-SE 方向に向き を変えながら鵡川図幅地域に達する。西側の地層が比較的整然と累重するのに対し、東側

註1) 芭呂沢向斜と門別図幅地域の清畑向斜は南方で一つの向斜となり、この間において厚真複背斜は消滅するもの と思われる。

においては,地層はじよう乱を示し,直立および逆転が認められ,平取断層と同様に東か ら西に向つて衝上した逆断層である。また,この厚真断層に附随するいくつかの断層が認 められる。

以上の2つが顕著なものであるが、これらのほかに同傾向のものとして、アウサリ背斜に伴なう2~3条の断層群がある。

前述のとおり、本地域および周辺地域の主要な地質構造を概観すると、広く古期岩類からなる南北性の日高山脈、あるいはこれの前面に併走する夕張山脈の方向と一致し、古い 地層は東に分布し、新しい地層は逐次西方に分布する。

また,これらの地域を構成する地層は東ほど粗粒堆積物が多く,かつ,地層の厚さも厚い傾向——特に振老層——をもつており,全体を通じて地層の傾斜も東ほど急で,西に行くほど緩やかになる。

このようなことから,堆積物の供給源,すなわち,東方脊梁山地の隆起とその西側前縁 部の著しい沈降を考えなければならない。かつ,このような運動が時代の推移とともに, 漸次西へおよんだものと考えられる。したがつて,現在認められるような脊梁山地の方向 に平行な褶曲構造を形成した運動は,すでに振老層の堆積中に始まつており,第三系堆積中 ずつと継続し作用したものと推定される。これは特に振老層堆積時に顕著であつたと考え られている。

また,これらの褶曲構造と同じ方向性をもつ前述の主要な断層も既述のとおり,東から 西への衝上性のものが多く,褶曲構造を形成した東からの側圧によるものと考えられ,両 者は密接不可分の関係にある。

以上述べた褶曲および断層を形成した造構造運動は,第三系堆積中ずつと引続いた運動 によるものではあるが,現在みられるような地質構造が終局的に決定されたのは,萌別層 堆積後――おそらく鮮新世末,第四紀以前――である。

III 応用地質

石 油

ま2)
本図幅地域は勇払油田と総称されている地域の主要部に当る。この油田については、小

註!) このような運動は北海道の中軸帯の西方に分布する同時期の地層において、極めて特異なものであることが知 32) られている。

註2) 列払油田は振老,軽輝,萌別油田の総称であるが、振老油田と軽輝油田は一括して一般には厚真油田とも呼ばれている。

1) 10) 粧1) 林儀一郎, 竹原平一等による調査がある。また, アウサリ背斜は千歳油田の南方延長に当 る。地質構造の項で述べた各背斜には多くの石油の表面徴候が認められる。なかでも宇久 留ドームおよび軽舞ドームは古くから産油し、現在その産油量は全く低下しているが、な お僅かながらも稼行されている。以下、竹原平一の報告その他からその概要を述べる。こ れらの油田は記録によれば明治時代に既に試掘されたが、本格的な産油を見るに至つたの は、手掘りあるいは上総掘りに代つてロータリー式鑿井機が採用されるようになつた昭和 7年頃から以降である。

	厚耳	真原剂	由	87		154]	82	219	2	256	27	1	312		
						第	6表	原 油	性 汨	、表19〕)					
	原	油 🖇	8 .	比重	店(レッ E(ッ) 80°C	ッドウ ド秒 50°C)) 凝 ()	固点 °C)	硫黄/ (%)	ティンティン (%	フ 残 分 炭) (%	溜 素)	ター ル分 (%)	泥水 (%	分)	色相
	厚リ	真原注	由	0.892	39.5	34.	5 –	30以下	0.1	0 0.	35 0	.62	24.5	C).2	黒色
_						第	7表	油田	水分材	斤表19〕)					
	油	田	名	P. H	I	SiO ₂ (g/l)		$\begin{array}{c} Fe_2O_3\\ Al_2O_3\\ (g/l) \end{array}$		Ca g/l)	Na (g/l	ι ()	K (g/l	I)	HN (g	NO3 /1)
	振軽		老舞		8.53 8.67	0.0 0.0	016 025	0.0	06 08	0.013 0.028	4.7 4.0	7582 0619	X	_		0.064 0.050
-	油	田	名	Cl (g/l)	I (g/l)		Br (g/l)		5O2 g/l)	CC (g/1)3))	Mg (g/l	g l)	固 総 (g	形 量 g/l)
	振		老	6.2	2792	0.0	031	0.0	04	0.001	1	.326	0	.035	1	2.614
~	軽		舞	6.1	.591	0.0	031	0.0	18	0.005	0	.864	0	.109	1	1.572
						笛	8 表	油田-	ガス分	析表19)					

第5表 原油の分溜性状表19)

30 %

40 %

50 %

60 %

20 %

70 %

油	田	名	CH4 (%)	CmHn (%)	CO ₂ (%)	$\binom{O_2}{(\%)}$	CO (%)	残滓 (%)	その他 (%)	備	考
振		老	67.94	_	0.6	6.6	0.4	23.86	0.6		
軽		舞	77.28	19.32	0.8	1.2	0.2	(#) <u></u>	1.2	吹込線不 めコアー	定のた 混入

註1) アウサリ背斜の北方延長の馬追山背斜は、古くから油徴地として知られ、馬追山背斜(追分図幅地域内)には 多くの試掘油井の記録がある。

原油名

初 溜 10 %

油田	振 老 (kl)	軽 舞	北海道合計	油田	振老	軽 舞	北海道合計
	(M)	86	476	四和 8年	2175	5.626	14 272
约旧40年 41		67	470	и <u>н</u> ли 0-4- 0	2,175	5,020	12 207
42		50	355	10	2 5 4 1	3,070	19,097
43		20	201	11	3,341 2 777	4,232	11,064
44		10	216	12	2.245	3,171	10.740
45		20	1 151	12	2 160	2,300	0.756
十正 2		10	701	10	3,100	2,177	9,750
八正 2	_	10	701 077	14	2,937	2,149	9,505
3	_	15	1 405	15	2,301	1,707	8,792
5	_	0	1,495	10	2,351	1,632	8,298
6	_	0	1,181	17	2,314	1,609	7,524
0	_	1	986	18	1,970	1,182	6,754
7	_	6	965	19	1,662	938	5,853
8	-	2	931	20	1,333	778	4,822
9	-	7	887	21	1,218	663	4,037
10	-	17	1,176	22	1,277	713	4,153
11	_	90	1,617	23	1,078	542	3,607
12		233	2,625	24	1,106	500	3,925
13	148	249	3,937	25	1,117	501	3,927
14	279	298	6,761	26	1,052	504	3,780
15	881	639	, 8,423	27	1,031	460	3,722
昭和 2	1,895	793	12,038	28	1,047	434	3,762
3	1,582	1,369	15,146	29	1,048	393	3,627
4	2,110	2,396	15,265	30	1,007	345	3,443
5	1,779	5,386	17,047	31	986	248	3,309
6	1,693	7,727	18,573	32	871	35	2,810
7	1,527	6,882	16,178	総 計	59,066	64,590	297,720

第9表 年度別產油量19)

註1) 北海道における明治 39 年以前の産油量は次の通り。

明治 36 年	(1903年)	336 kl	明治	39年	471 kl	
37	1.1	396				
38		670	合	計	1,873	

註2) 昭和29年以降は指定統計による。

註3) 北海道合計は稚内,声問,増幌,目梨,北豊富,石狩,厚田,振老,軽舞,以 上9油田の合計。

H HIO

本油田中,現在までに産油をみたのは宇久留ドームの芝毛内沢および軽舞ドーム地域で あり,前者が振老油田で後者が軽舞油田である。

振老油田

位置

振老油田は本図幅地域の中央部厚真村厚真(旧振老)市街の東方約4kmに位置し,南 北延長約3km,東西約1kmの範囲であつて宇久留背斜の軸部にあたる。

図版 6 振老油田 (三毛内沢)

沿 革

振老油田における石油鉱区は北海道石油組合,南北石油(明治 38 年),宝田石油(明治 41年),日本石油(大正 10年),帝国石油(昭和 17年),北海石油(昭和 31年)と順次経 営が移り現在に至つている。

開発当初には手掘り井によつて少量の原油を採油していたが、大正 13 年に 試掘を 開始 し、上総掘りにて浅層の出油があり、さらに綱掘りを実施して深油層を発見するようになつ た。綱掘り 4 号井は大正 15 年 9 月に深度 644 m で成功し日産 50 石を採油した。日本石油 会社においては昭和7年からロータリー式を採用し、昭和 11 年 9 月ロータリー式 45 号井 は深度 800 m で日産 30 石の産油をみた。昭和 14 年 5 月末 現在では、ロータリー式 坑井 は64 坑、綱掘式坑井は 33 坑、上総掘式坑井は 28 坑、そのほか大日本石油鉱業株式会社の

註2) この会社は共に帝国石油に統合された。

註1) 明治 38 年 1 月,南北石油会社手掘井 6 抗を開坑し,深度 80~280 尺に達し,各坑井から 毎日 1.5 石ずつ採 199 油との記録があるが第 9 表産油高には記録されていない。

共同井(手掘井)18 坑の計143 坑が開坑されていた。本油田は昭和11 年には3,777 kl/年 と最盛時を示したが,その後は漸減の一途をたどり,昭和32 年度には871 kl/年の 採油量 を見たにすぎない。

地質および構造

字久留ドームはこの地区では N 25°~30°W の方向をもち南へ 緩やかに沈降し, 軸部に 振老層を露出させており,その上位に軽舞層が累重する。本ドーム軸西方にほぼ平行して 走る断層が存在するために,背斜の西翼は軸部附近を除いて一般に 40°~70°の 傾斜 を示 すが,これに反して東翼は一般に 45°以下の緩傾斜を示しており,本ドームは軸面が東方 に傾斜しているいわゆる非対称背斜である。

油層の厚さはおおむね1m以下で貯溜岩は細粒砂岩である。本油田の油層は地表からの 深度によつて

i) 北部で深度 400~440 m, 中央部および南部で深度 600 m の油層

ii) 北部で深度 250 m, 南部で深度 300 m の油層

iii) 深度70~160 m の油層

に3大別される。

三毛内沢附近では軽舞層および振老層中に開坑し採油を行つているが,含油砂層の膨縮 および尖滅が著しいために,一般に各油層の厚さおよび面積は大きくなく,一坑井にかな りの出油をみても隣接坑井においてはほとんど出油しないという場合も多く,このような 油層の不連続が見られる。

軽舞油田

位置

軽舞油田は厚真市街の南京方約8 km に位置し,北西一南京延長は約2 km,北東一南西 は約1.5 km の範囲であり軽舞背斜の軸部に当る。

沿 革

軽舞油田は明治 39 年7月インターナショナル石油会社が綱式1号井を初めて開坑し,明 治40年6月に深度550mで掘止め日産10石内外の出油があり,引続き綱式2号井は深度 484m,3号井は深度772mまで試掘したが不成功に終り,明治44年2月日本石油の経営 に移り,大正10年11月綱式4号井を試み,深度392mで日産12石の出油があり,その後 119坑を掘り昭和6年には7,727 kl/年の最高産油量を示した。昭和10年以降は採油のみ続 けており産油量は漸減している。昭和17年に帝国石油と合併し,昭和25年には帝国石油 により深部開発の目的をもつて深度1,107 m まで掘撃したが,良好な油層に当らず廃坑し た。さらに昭和31年5月振老油田とともに北海石油の経営に移つているが、現在は極め て少量を産油しているにすぎない。

地質および構造

軽舞ドームはこの地区ではN45°Wの走向をもち、宇久留背斜と雁行している。軸部に は軽舞層の砂岩泥岩互層が露出し、その上位に上部硬質頁岩が累重している。軽舞背斜の 軸心部寄りでは概して両翼とも 25° 内外の傾斜を示すが、遠ざかるにしたがいその傾斜を 増し、西翼は東翼に比して急傾斜を示し、いわゆる非対称性背斜構造である。

坑井記録によれば,油層は概し て地表下 350 m から 750 m に わ トニカロータリー第1号井 たる間に賦存するが, 振老油田と 同様に膨縮尖減が著しく各坑井ご とに不連続のようである。

試掘地

前述した油田のほかに現在まで に試掘が行われた地域には, トニ 力試掘地, 紋別沢試掘地, 軽舞沢 試掘地および石油沢試掘地がある が, 産油をみず何れも廃坑となつ ている。これについて竹原平一の 報告をもととしてその概要を述べ ると次のとおりである。

トニカ試掘地は厚真市街地の北 東約4kmのトニカ附近に位置し, 大正13年以来広瀬某が綱掘式で 4 坑井を開坑したが 出油量僅少の ため中止し,昭和9年日本石油は ロータリー式で1号井および2号 井を掘鑿したが不成功に終つた。 1-1 油徴深度は第8図のとおりであ 第8図 トニカ試錐油徴深度

トニカロータリー第2号井

I		-3.5	小出水
-37.00	小ガス	-43.3	ガス気
-128.35	油気		
-141.50	小油気	-163.6	油気
-185.70	小ガス及び油気	-208.2	ガス気
=265.00	油気	-214.0	小油気
268.50	ガス気	-267.2	小ガス
277.00		-299.2	小油気
-377.00 -408.20	ガス ガス気	1010	
		-404.0	カイズ
-529.60	ガス	522.0	
-535.80 543.00	ガス ガス及び油気	543.0	ガス及び油気
-581.50	ガス	-580.0	油気
-621.40	ガス	-630.0	ガス気
-657.60	ガス気	-676.7	微油気及びガス気
720.00	* 7 /=	-700.1	ガス気
-732.00	油気	-739.0	ガス
-777.50	ガス	-777.8	ガス
		-834 7	ガス及び油気
11 A.	* * × ×	-871.0	ガス気
			1
		-1079.0	ガス及び油気
-		-1096.0	ガス及び出水
-1203	掘止め	-1203.20) 掘止め
		(竹原平	z―による)

る。なお、本地域は頗美字ドームの軸心部でトニカ層の分布する地域である。

紋別沢試掘地はトニカの南方約4kmに位置しており,昭和2年に日本石油は東老軽舞 綱掘第1号井を掘鑿し,深度1,524mまで至つたが出油を見ず廃坑とした。本試掘地は顔 美宇ドームの軸部にあり,振老層中から試掘したものである。

軽舞試掘地は軽舞沢中流に位置しており,昭和6年に日本石油が網掘21号井を開坑し, 深度632mに達したが出油を見ず廃坑した。本試掘地は軽舞背斜の南部沈降部にあり,多数の石油徴候が認められる。

石油沢試掘地は宇久留沢側支流の石油沢との合流点近くに深度454mの試掘を行つたが 出油せず廃坑とした。この地域は軽舞層の上部硬質頁岩が分布し、宇久留ドームの南部沈 降部にあたる。

以上,本地域の油田について述べたが,含油層である振老層および同層準の地層が広く 分布し,特に一つの大きな向斜構造中に多くの背斜あるいはドーム構造が認められるにも かかわらず,振老および軽舞油田----宇久留ドームおよび軽舞ドーム----のみが産油を見 ているにすぎない。このことは含油層が振老層の比較的上部に限られるために,侵蝕程度 が産油を大きく支配しているものと推察される。

文 献

- 1) 小林儀一郎: 胆振国勇払郡勇払油田調查報告, 鉱物調查会報告, No. 3, 1911
- 2) 村田 析: 栗山地方の地質, 地質学雑誌, Vol. 30, 1923
- 3) 村田 析: 追分地方火山灰堆積の状態,北海道石炭鉱業会会報, No. 156, 1927
- 4) 大村 蔵: 北海道油田の地質及び鉱床,地質学雑誌, Vol. 37, No. 447, 1930
- 5) 千谷好之助: 本邦第三紀層の分類とその名称について,地質学雑誌, Vol. 37, No. 441, 1930
- 長尾 巧: 北海道日高山脈西方の中生層および第三紀層概観,地学雑誌, Vol. 43, No. 509, 1931
- 7) 今井半次郎: 幌内層及び川端層に関する 最近の 研究について,北海道石炭鉱業会 会報, No. 266, 1933
- 第上啓太郎・山田 忍・長沼祐二郎; 北海道における 火山灰層に関する 調査---第一報----東部胆振国における火山灰の分布について,火山, Vol. 1, No. 3, 1933
- 9) OTUKA, YANOSUKE: Tertiary Crustal Deformations in Japan, Jubilee Publication in the Commemoration of Prof. Yabe, M. I. A., Vol. 1, 1939
- 10) 竹原平一: 北海道振老油田地形及地質図説明書, 地質調查所, 1940
- 11) 竹原平一: 北海道勇払郡厚真村北部の2背斜構造と油徴,石油技報, Vol. 2, No. 8, 1940
- 12) 藤岡一男: 石狩炭田紅葉山附近の所謂中間層について, 矢部教授還暦記念論文集, Vol. 2, 1941
- 13) 長尾 巧: 札幌——苫小牧低地带 (石狩低地带), 矢部教授還暦記念論文集, Vol. 2, 1941
- 14) 根本忠寛・三本杉己代治・水口文作: 登川図幅および説明書,北海道工業 試験場 報告, No. 5, 1942
- 15) 松井 愈: 石狩炭田南部の川端統基底部(演旨),地質学雑誌, Vol. 56, No. 656, 1950
- 16) 松井 愈・高橋 進: 紅葉山階ならびに滝の上階の火山岩活動の特性,新生代の 研究, No. 9, 1951
- 17) 松井 愈: 紅葉山層について,新生代の研究, No. 4, 1950
- 山田 忍: 北海道における火山噴出物の分布について、北海道地質要報、No. 21, 1953
- 19) 北海道石油鉱業振興会(編): 北海道石油鉱業の現況と将来, 1955
- 20) 厚真村役場 (編): 厚真村史, 1956
- 21) 松野久也・秦 光男: 追分層から Cyclammina japonica ASANO の産出, 北海道

地質要報, No. 30, 1956

- 22) 小林 勇・垣見俊弘・植村 武・秦 光男: 5万分の1地質図幅「滝川」(旭川-第52号)および説明書,北海道開発庁,1957
- 23) 石田正夫・松野久也: 石狩一苫小牧低地帯における 海成洪積層の 新産地, 地質学 雑誌, Vol. 63, No. 747, 1957
- 24) 土田定次郎: 北海道宗谷・日高堆積盆地の微古生物学的研究,その1~6,石油技 術協会誌, Vol. 22~23, 1957~1958
- 25) 島田忠夫・矢崎清貫: 北海道苫小牧市附近天然ガス予察調査報告,地質調査所月 報, Vol. 9, No. 11, 1958
- 26) 今井 功・角 靖夫: 5万分の1地質図幅「富川」(札幌一第55号)および説明書 北海道開発庁, 1958
- 27) 対島坤六・田中啓策・松野久也・山口昇一: 5万分の1地質図幅「達布」(旭川一 第38号)および説明書,地質調査所, 1958
- 28) 松野久也・山口昇一: 5万分の1地質図幅「静内」(札幌一第63号)および説明書 北海道開発庁, 1958
- 29) 山口昇一: 5万分の1地質図幅「門別」(札幌一第62号)および説明書,地質調査 所, 1958
- 30) 勝井義雄: 支笏降下軽石堆積物中の化石林について,地質学雑誌, Vol. 64, No. 755, 1958
- 31) 山田 忍: 火山噴出物の堆積状態から見た冲積世における 北海道火山の 火山活動 に関する研究,地学団体研究会專報,1958
- 32) 松野久也: 古丹別層の堆積盆の沈降運動,石油技術協会誌, Vol. 23, No. 4, 1958
- 33) 山口昇一: 5万分の1地質図幅「鵡川」(札幌一第54号) および説明書, 地質調査 所, 1960
- 34) 松野久也・秦 光男: 5万分の1地質図幅「追分」(札幌-第32号)および説明書 北海道開発庁,1960

EXPLANATORY TEXT

OF THE

GEOLOGICAL MAP OF JAPAN

Scale 1:50,000

HAYAKITA

(Sapporo, No. 43)

By

Kyuya Matsuno Masao Ishida (Written in 1959)

(Abstract)

GEOLOGY

General remarks

The sheet covers the area from $42^{\circ}40'$ to $42^{\circ}50'$ N. Lat. and $141^{\circ}45'$ to $142^{\circ}00'$ E. Long.. On the basis of the topographical features, the area is divisible into three portions, eastern, central, and western, extending in north-southery direction respectively.

The eastern portion, in which the Fureoi and Karumai formations develope, is a dissected mountainous region at an altitude of 180 to 400 meters. The central portion is covered by several steps of flat topped terrace planes whose foundations are mostly composed of the Moebetsu formation. The last, western portion, which is a part of the Sapporo-Tomakomai Lowland, is covered by low table lands at an altitude of 10 to 20 meters and by swampy low land.

Age		Formation	Thick. (m)	Rock facies	Remarks
Quaternary	Recent	Volcanic ash Alluvium		Pumice	 ✓ Volcanic activity ✓ Volcanic activity Emergence and tilting ✓ ∫Degradation ⟨Tectonic movement Marine molluscan fauna ✓ Miocene foraminiferal fauna <i>Cyclammina</i> spp. Marine molluscan fauna
	Pleisto- cene	Volcanic ash Terrace deposits		Pumice, volcanic sand and lapilli Sand, gravel, silt, clay and peat	
Neogene Tertiary	Miocene	Moebetsu formation	1400 +	Sandy silt Conglomerate Alternation of sandstone and silstone Alternation of siltstone, sandstone and hard shale	
		Karumai formation	600~1100	Hard shale Alternation of sandstone and mudstone Hard shale	
		Fureoi formation	800~1300	Alternation of conglomerate and sandstone Alternation of sandstone and mudstone	
		Tonika formation	80+	Hard shale Tuff breccia	←— Volcanic activity

N

In this area, the Neogene Tertiary and Quaternary strata are distributed. The subdivisions of the strata and their stratigraphic sequence are given in Table 1.

NEOGENE TERTIARY

Tonika formation

The Tonika formation is the lowermost member in this area. Its distribution is quite restricted; only its uppermost horizon can be seen in the axial part of the Habiu dome. It consists of tuffaceous hard shale intercalated with a layer of augite hypersthene andesitic tuff breccia. The occurrence of marine molluscan fossils was ascertained in the horizon below the hard shale by the two test borings for petroleum in 1934. But from this molluscan fauna the geological age of this formation was not ascertained for sure at that time.

From the similarity of the rock facies and its stratigraphical position, this formation is probably correlated to the middle Miocene Takinoue and Sakae formations in the adjacent area.

Fureoi formation

This formation is divided into two lithological units roughly: an alternation of sandstone and mudstone in the lower and an alternation of conglomerate and sandstone in the upper. The boundary between the two is not so sharp, as they interfinger with each other in many places.

The alternation of sandstone and mudstone is composed of fine or medium grained sandstone and mudstone which sometimes become silty or sandy. In the upper part of this alternation, four or six layers of tuff are interbedded; they are traced to the north-western and southeastern directions broadly. But their south-western extension is not clear.

The alternation of conglomerate and sandstone is composed of conglomerate and sandstone chiefly with sometimes mudstone or hard shale appearing in the alternation as intercalations. It is found that the above mentioned rocks occur with orderly repetition of a sequence of cyclothemic arrangement, in ascending order. i) conglomerate, ii) sandstone, and iii) alternation of sandstone and mudstone or hard shale. The coarser sediments such as conglomerate and coarse sandstone are dominant in the eastern area becoming finer toward the west. At Ukuru dome, at the western extrimity of the distribution of the Fureoi formation, those coarser sediments are absent in its upper part.

The geological age of this formation is ascertained to be Miocene from the foraminiferal fauna contained in it.

Karumai formation

The Karumai formation covers the above mentioned Fureoi formation conformably. It is divided into three members in ascending order, a lower hard shale, an alternation of sandstone and mudstone, and an upper hard shale.

The lower hard shale is compoosed of an alternation of platy hard shale 10–15 cm in thickness and of thin layers of mudstone, siltstone or sandstone. The alternation of sandstone and mudstone in the middle part of the fomation consists chiefly of sandstone and mudstone with intercalated hard shale. In the northern part of the area, this alternation has a layer of tuff in the middle portion which can be traced in some extension. The upper hard shale is an alternation of hard shale, mudstone, siltstone and sandstone. Amongst them, hard shale is most dominant.

From this formation, a small number of molluscan and foraminiferal fossils were collected. On the evidence of these fauna it is concluded that the geological age of this formation is Miocene.

Moebetsu formation

The Moebetsu formation transforms from the Karumai formation gradually, and is composed of four units of rock facies, namely, an alternation of siltstone, sandstone and hard shale, an alternation of sandstone and siltstone, a conglomerate, and a sandy siltstone. The interrelations between these different rock facies are those of lateral change. A few examples of foraminiferal fossils which are judged to belong to Miocene fauna are contained in the basal part of the formation.

QUATERNARY

The Quaternary sediments are of (a) unconsolidated gravel, sand, silt and peat which built up the flat topped terrace surfaces, (b) volcanic fall ashes, (c) alluvial deposits and (d) moor deposits. Among the first, the silt bed which constitutes a part of the terrace 30-80 m high yields some fossils of shallow marine dwellers at the southern part of the town of Hayakita.

The terrace deposits and volcanic fall ashes except the uppermost member of ashes are probably Pleistocene in age, judging from the elevation of their distribution above sea level.

ECONOMIC GEOLOGY

The Fureoi formation and its equivalent Kawabata and Masuporo formations are the main resorvoir of the oil fields in Hokkaido, and the overlying hard shales of the Karumai formation serves well as cap rocks. In addition, many good structures such as anticlines and domes are distributed in this area. Among them, the Ukuru and Karumai domes have been exploited since the beginning of this century. In the period a few years before and after 1932 when the rotary boring machine was introduced to this oil field, the production increased remarkably, but since then, the output has gradually declined to 2,845 kl in 1957 which is one-third of the peak.

From the record of the wells, the resorvoir rocks are distibuted at comparatively shallow depths of 70 to 750 m from the surface through both domes.

On the other hand, structures other than the above two have been prospected by many companies, but there has been no production yet.

昭和35年3月15日印刷 昭和35年3月20日発行

著作権所有 北海道開発庁

印刷者 三 田 徳 太 郎 印刷所 興国印刷株式会社