鹿児島地域の重力異常について

村田泰章¹·名和一成²·駒澤正夫²·森尻理恵²·広島俊男³· 牧野雅彦²·山崎俊嗣²·西村清和²·大熊茂雄²·志知龍一⁴

Yasuaki Murata, Kazunari Nawa, Masao Komazawa, Rie Morijiri, Toshio Hiroshima, Masahiko Makino, Toshitsugu Yamazaki, Kiyokazu Nishimura, Shigeo Okuma and Ryuichi Shichi (2007) Bouguer Gravity Anomalies in Kagoshima District, Kyushu, Japan. *Bull. Geol. Surv. Japan*, vol. 58(11/12), p.351 - 370, 9 figs, 1 table, 1 appendix-table.

Abstract: The Geological Survey of Japan, AIST is publishing gravity map series of Japan on a scale of 1:200,000. We published a new gravity map of Kagoshima district using existing 15,641 gravity points and new 236 gravity points surveyed around Amakusa Island in 2001. We estimated surficial rock density distribution using the gravity data by the ABIC minimization method. The estimated densities show geologic structures buried in pyroclastic flows and density changes can be observed in same geologic units. The Bouguer anomaly map corrected by the density distribution shows clear relations between gravity anomalies and geologic features such as the Usuki-Yatsushiro tectonic line, Kagoshima graben and calderas in the survey area.

Keywords: Bouguer gravity anomaly, Amakusa, Yatsushiro, Kagoshima, Kyushu, Rock density

要 旨

産業技術総合研究所地質調査総合センターでは、日本全国をカバーする20万分の1の重力基本図を編集中である。筆者らは、鹿児島地域において、既存の重力 測定データと新規測定データの合計15,877点を編集して、重力基本図を作成した。更に、重力データを用いて地殻表層密度分布の推定を行うことにより、地質調査だけでは明らかにできない伏在する地質構造を推定できると共に、地質分布の違いの影響を取り除いたブーゲー異常図から、臼杵 - 八代構造線に対応する重力異常のリニアメントと鹿児島地溝・カルデラ群に対応する低重力異常が明らかになった。

1. はじめに

産業技術総合研究所地質調査総合センターでは九州 地域において,大分地域(広島ほか,2001;2002),福 岡地域(森尻ほか,2001;2002),唐津地域(牧野ほか, 2003),宮崎地域(名和ほか,2004;2005),鹿児島地 域(村田ほか,2004),屋久島地域(駒澤ほか,2005), 長崎地域(牧野ほか,2006)の重力図を順次出版し,九 州全域の重力異常の詳細を明らかにした.本稿では, 2004年に出版した北緯31度20分-32度45分,東経 129度55分 - 131度00分の範囲(以下, 鹿児島地域と 呼ぶ)をカバーする「鹿児島地域重力図」の編集の詳 細について述べると共に,同地域の重力異常について の考察を行う.第1図に,九州地域の重力図の地域区 分を示す.また,第2図には鹿児島地域の地形陰影図 を示す.

鹿児島地域でこれまでに行われた重力調査として, 桜島火山においては、宮町ほか(2000)によって高密 度な重力調査が行われた. 桜島火山のおよそ標高300 m以下の地域に満遍なく合計357点の測点を配置し,測 点の標高は火山基本図や地形図を用いて決定された. 宮町ほか(2000)では調査の結果から、重力異常と表 層地質、及び火口との関連を論じた。また、宮町ほか (2004)は,1997年鹿児島県北西部地震の余震域と重 力異常の関係を明らかにすることを目的として, 紫尾 山を中心とする地域で782点の重力調査の結果を行っ た. 瀬谷・小川(1971)は,加久藤盆地・小林盆地に おいて587点の重力調査を実施し,両盆地における陥没 構造に起因する低重力異常を求め,断面解析を実施し た.小林ほか(1995,1997)も,霧島火山及び加久藤カ ルデラなどの地域において稠密な840点の重力測定を行 い,加久藤・小林カルデラに起因する低重力異常の詳 細を明らかにするとともに,安楽地域において新たな カルデラの存在を示唆した.この調査では、測点の位

¹地質調査情報センター(AIST, Geological Survey of Japan, Geoinformation Center)

²地質情報研究部門(AIST, Geological Survey of Japan, Institute of Geology and Geoinformation)

³元産業技術総合研究所(Formerly AIST, Geological Survey of Japan)

⁴中部大学 (Chubu University, Kasugai, Aichi 487-8501, Japan)

置は2万5千分の1地形図や,より大縮尺の地形図を利 用して決定され,山岳部などの一部はGPSによる静止 測量も行われた.牧野・遠藤(1999)は,出水市針原 川で1997年に発生した土石流災害について,重力探査 によって崩壊原因となった地質構造の把握を試みた. 小室ほか(2000)は,島原半島の稠密な重力調査から, 雲仙地溝と重力異常の関係,及び千々石カルデラの可 能性について論じた.この他にもいくつかの重力調査 が同地域で行われていることが,地質調査総合セン ターが公表している総合地質情報データベースGEO-DB(http://www.gsj.jp/Gtop/geodb/geodb.html)の 中の「物理探査調査研究活動データベースEXACTS」 で分かる.

この地域で公表された縮尺100万分の1以上の重力図 は、全域が駒澤ほか(1999)(縮尺:100万分の1), Gravity Research Group in Southwest Japan (2001) (70万分の1),山本・志知(2004)(約33万分の1),志知 ほか(2007)(75万分の1),霧島地域では小川ほか (1981) (5万分の1) が、これまでに出版されている.

2. 重力測定の概要

重力図の編集を開始した時点で,天草諸島は大きな 重力データの空白域であった.そのため,2001年2月 に天草諸島において236点の重力測定を実施した.重力 測定には,Scintrex重力計CG-3Mを用い,GPS高速静 止測量により測点の位置を決定した.

調査地域のほぼ中央の本渡市に置いた重力基点の絶 対重力値は、日本重力基準網1975(国土地理院、1976) に準拠するため、国土地理院の測定により絶対重力値 が明らかになっている水準点を5点以上選定して、閉塞 測定により決定した。

調査では、陸路ばかりではなく、海路で渡ることの できる御所浦島、牧島、獅子島においても重力測定を 実施して,空白域をなるべく小さくするよう努力した. 重力基点を出発してから同じ重力基点に戻るまでの閉 塞時間は、全測定を通して12時間を超えることはな かった.

GPS測量による測点位置の決定のために,国土地理 院が熊本県天草郡栖本町に設置している電子基準点の 測定データと基準点成果を利用させて頂いた.この座 標を北緯32度25分34.5909秒,東経130度19分25.0717 秒,標高588.49 m,ジオイド高32.90 mとしてGPSの 基線解析を行い,各測点の位置を決定した.

新規に測定した重力データの一覧を付表 A-1に示す. また,重力データの中の記号の説明を同じ付表 A-1の 末尾に記載した.

3. ブーゲー異常図の作成

3.1 既存データの編集

鹿児島地域の陸域については,地質調査総合セン ター,新エネルギー・産業技術総合開発機構,金属鉱 業事業団の測定データが「日本重力CD-ROM第2版」 (地質調査総合センター,2004)によって公開されてい る.また,名古屋大学を始めとする多くの機関のデー タがGravity Database of Southwest Japan (CD-ROM) (Gravity Research Group in Southwest Japan, 2001) に収録されている.今回は,該当各機関の了解を得て データを使用させて頂いた.また,国土地理院,都城 市,金鉱業振興協会の未公表データについても,了解 を得て,重力図の編集に使用させて頂いた.

鹿児島湾及び薩摩半島西方沖の海域については,地 質調査総合センター(旧地質調査所)が1984年の白嶺 丸GH84-1,GH84-3航海で,LaCoste & Romberg S-63 型船上重力計を用いて測定した3,594点の測定データを 用いた(地質調査所,1985;山崎・西村,1985).

第2図 鹿児島地域の地形陰影図.

Fig. 2 Topographical shaded relief map of Kagoshima district.

第1表	鹿児島地域重力図の編集資料-	-覧.

Table 1 Compiled data for the gravity map of Kagoshima district.

機関名	データ採録資料名	測点数	分布 (第3図)
	1984年GH841航海(未公表)	3,594点	
地質調査総合センター	駒澤ほか(2004)	1,619点	А
	新規測定(本報告で公表)	236点	
新エネルギー・産業技術総合開発機構	新エネルギー・産業技術総合開発機構(2004)	2,525点	В
金属鉱業事業団	金属鉱業事業団(2004)	2,418点	С
名古屋大学		2,051点	D
鹿児島大学	The Gravity Research Group in Southwest	1,136点	Е
熊本大学	Japan (Representatives: Ryuichi Shichi and	734点	F
島根大学	Akihiko Yamamoto) (2001)	535点	G
東京大学地震研究所		499点	Н
国土地理院	重力測量資料(未公表)	414点	Ι
都城市	重力探查資料(昭和64年)(未公表)	102点	J
金鉱業振興協会	重力探查資料(昭和44年)(未公表)	14点	K
	合計	15,877点	

「鹿児島地域重力図」の編集のために使用した各機 関の資料・測点数の一覧とその分布を第1表と第3図に 示す.

3.2 単一の仮定密度によるブーゲー異常図の作成

新規測定データ及び既存データから,名和ほか (2005)と同じ方法により重力異常図を作成した.基本 的な手順は,地質調査所重力補正標準手順SPECG1988 (地質調査所重力探査グループ,1989a,b)によってい るが,地形補正計算に使用した国土地理院の250 m及 び50 mメッシュ標高データが旧日本測地系のままのた め,補正計算の過程で測地系の変換の工程が必要と なっている.

地形補正のためには,地殻の岩石の密度を与える必 要がある.第4図に鹿児島地域の地質図を示す.火砕流 堆積物に覆われた広大な台地が,この地域の地質の一 番大きな特徴である.桜島火山など現在も活動を続け る火山も存在する一方,北部においては中・古生界の 付加体や変成岩が分布する等,地域内の岩石密度のコ ントラストは大きい.

出版した重力基本図では、地形の補正のための仮定 密度を、他の図幅と共通の2.3 g/cm³としているが、こ こでは更に、火砕流台地の平均密度に近いと思われる 2.0 g/cm³と、古い時代の堆積岩や深成岩の密度に近い 2.67 g/cm³の重力異常図を作成した。仮定密度が2.0 g/cm³、2.3 g/cm³、2.67 g/cm³の重力異常図を、それ ぞれ第5図、第6図、第7図に示す。

3.3 密度分布の推定と可変の仮定密度によるブーゲー 異常図の作成

先に述べたように,この地域には幅の広い密度を持つ地質が分布している.そこで,ABIC 最小化法 (Murata,1993; Nawa *et al.* 1997)により地殻表層密 度の分布の推定を試みた.

使用した重力データは,重力図の編集に用いたもの と同じである.地形データは,国土地理院の50 mメッ シュ標高データを使用した.解析の手順は,次の通り である.

⁻

第3図 重力図編集に用いた各機関の測点分布.A:地質調査総合センター,B:新エネルギー・産業技術総合開発機構,C:金属 鉱業事業団,D:名古屋大学,E:鹿児島大学,F:熊本大学,G:島根大学,H:東京大学地震研究所,I:国土地理院, J:都城市,K:金鉱業振興協会.

Fig. 3 Distribution of used gravity stations. A: Geological Survey of Japan, B: New Energy and Industrial Technology Development Organization, C: Metal Mining Agency of Japan, D: Nagoya University, E: Kagoshima University, F: Kumamoto University, G: Shimane University, H: Earthquake Research Institute, University of Tokyo, I: Geographical Survey Institute, J: Miyakonojo city and K: Gold Mining Promotion Association.

-355-

- 第4図 鹿児島地域の地質図. 1/100 万地質図(地質調査総合センター, 2003)を編集して作成した. Q:第四紀堆積岩, PG: 古第三紀堆積岩, K:白亜紀堆積岩, J:三畳紀 - ジュラ紀堆積岩, P:古生代堆積岩, V:火山岩, G:深成岩, M: 変成岩, U:超苦鉄質岩, UTL:臼杵 - 八代構造線, BTL:仏像構造線.
- Fig. 4 Geological map of Kagoshima district compiled from 1:1,000,000 geological map of Japan (Geological Survey of Japan, 2003). Q: Quaternary Sediments, PG: Paleogene Sediments, K: Cretaceous Sediments, J: Jurassic-Triassic Sediments, P: Paleozoic Sediments, V: Volcanic Rocks, G: Granitic Rocks, M: Metamorphic Rocks, U: Ultramafic Rocks, UTL: Usuki-Yatsushiro tectonic line and BTL: Butsuzo tectonic line.

第5図 鹿児島地域のブーゲー異常図 (仮定密度:2.0 g/cm³). コンター線間隔は1 mGal. Fig. 5 Bouguer gravity anomaly map of Kagoshima district for an assumed density of 2.0 g/cm³. Contour line interval is 1 mGal.

第7図 鹿児島地域のブーゲー異常図 (仮定密度:2.67 g/cm³). コンター線間隔は1mGal. Fig. 7 Bouguer gravity anomaly map of Kagoshima district for an assumed density of 2.67 g/cm³. Contour line interval is 1 mGal.

第8図 重力データによって推定した鹿児島地域の平均地殻表層密度分布. Fig. 8 Distribution of surficial rock densities estimated from gravity data.

Fig. 9 Bouguer gravity anomaly map of Kagoshima district for the estimated density distribution shown in Fig. 8. Contour line interval is 1 mGal.

(1) 密度メッシュの設定

解析範囲を東西方向90秒(約2.4 km),南北方向60 秒(約1.8 km)のメッシュに区切り,その中では密度 は一定とした。海のみのメッシュは計算から除外した 結果,メッシュの総数は2,929であるが,解析範囲外 の地形の補正密度と海域地形の補正密度を加えた2,931 が,求めるパラメータの総数である.

(2) 重力効果の計算

次に,2,931に分割された領域の地形による重力効果 を測点毎に計算した.重力効果の計算は,測点からの 距離に応じて,線密度による近似式,角柱の厳密式, 三角柱の厳密式を使用した.

(3) スプライン曲面の当てはめによる密度分布推定

解析範囲に東西・南北の節点数を共に100としたスプ ライン曲面を当てはめ、この曲面が最も滑らかになる ように,2,931個の密度値を計算した.この当てはめの 際に、データの当てはまりの良さと曲面の滑らかさの トレードオフは、ABICを最小とするように決定してい る.また、重力データの分布に対して密度メッシュの 大きさが細かいため、隣り合う密度区分メッシュ間の 密度差を小さくするというペナルティーを付与した. このトレードオフパラメータの大きさはABICでは決定 できないため、いくつかのトレードオフパラメータで 計算し、密度分布の滑らかさが最も適当だと思われる 値を採用している.このトレードオフパラメータの決 定方法は今後の課題である.

密度推定の結果を第8図に示す.また,第8図の密度 分布で補正したブーゲー異常図を第9図に示す.

4.考察

4.1 密度分布の特徴

ここでは,第8図に示した密度分布の推定結果につい て考察を行う.今回の密度推定では,一つの密度推定 メッシュに含まれる測点の数は平均してわずか4.2点で あるため,各メッシュの推定値を一つ一つ議論するの には適さない.各メッシュの推定値を概観して,地質 構造との比較を行う.

まず, 洪積・沖積平野部では1.8 g/cm³以下の密度が 推定されているが, 平野部では測点の標高差が非常に 小さいため推定精度は低い.洪積・沖積平野部以外で 低い密度が推定されているのは, 笠野原台地, 鹿児島 市吉野台地, 霧島市十三塚原, 国分市春山原などの大 規模なシラス台地とその周囲部であり, その推定密度 はほぼ1.7~1.8 g/cm³の範囲に収まる.この地域は地 形が比較的平坦であり, 重力の測点の標高差も小さい ことから, この密度が約2万5千年前に姶良カルデラの 大噴火で発生した入戸火砕流(荒牧, 1969)の本体の密 度であると考えられる.その他の火山噴出岩の分布地 域は2.0~2.2 g/cm³と推定されており,入戸火砕流堆 積物の下に伏在する火砕流堆積物の密度が反映されて いると推定され,更に重い密度が推定されている地域 では,基盤岩(白亜紀の付加体)が地表近くまで上昇 している可能性がある.火山の推定密度を見ると,桜 島火山は1.9~2.0 g/cm³,霧島火山は2.1~2.2 g/cm³, 雲仙普賢岳は2.0~2.3 g/cm³と推定された.

白亜紀の付加体について見てみると,薩摩半島や高 隈山周辺では2.5 g/cm³前後の軽めの密度を推定する が,紫尾山周辺では局所的に3.0 g/cm³を超え,推定値 のばらつきが非常に大きい. 仏像構造線の南側の白亜 紀の付加体と北側のジュラ紀の付加体の間で大きな密 度差があるようには見えず,共に2.6~2.8 g/cm³の推 定値である. 高隈山及び紫尾山において付加体に貫入 した中新世の花崗岩は,その周囲の付加体よりも若干 軽い密度が推定されている. 密度推定で最も高い密度 が推定されている地域は, 臼杵 - 八代構造線に沿った 地域で,この地域に分布する超苦鉄質岩,変成岩,古 生代の付加体中の玄武岩ブロックに対応している.

4.2 ブーゲー異常の特徴

ここでは、地殻表層密度分布の違いをできる限り排除した可変密度ブーゲー異常図(第9図)の特徴を、地 質図(第4図)などと比較しながら考察する。

ブーゲー異常の一番の急変部は,別府 - 島原地溝の 南縁に対応する島原湾の南岸に存在し,約14 mGal/ kmの変化量である. 鹿児島湾の両側にも南北性の直線 的な急変部が存在しているが,鹿児島湾の成因と考え られる鹿児島地溝(日本列島の地質「九州地方」編集 委員会編,1992)の位置を表していると思われる.

鹿児島地溝は,鹿児島湾から北に人吉盆地付近まで 続いていると考えられている.鹿児島地溝の中で一番 大きな低重力異常は,鹿児島湾奥の姶良カルデラであ る.姶良カルデラの中の海域には重力測点が無いため 低重力の中心ははっきりしないが,陸域のデータから は桜島のすぐ北側にあるように推定され,その値は約 -26 mGalである.姶良カルデラの北には,安楽地域,加 久藤盆地,小林盆地,そして人吉盆地に低重力異常を 認めることができる.加久藤盆地,小林盆地について は,地質調査からもカルデラであると考えられている が(田島・荒巻,1980),安楽地域,人吉盆地について は,火山活動によってできた低重力異常であるという 証拠はまだ無い.

臼杵-八代構造線に対応した重力異常のリニアメント は弱いながらも確認できるが、仏像構造線においては 確認できない.密度推定で分かったように仏像構造線の 両側で大きな密度差がないためであろうと思われる.

野間岬の北方海域の低重力異常について、山崎・西村 (1985)は基盤が深く厚い堆積物で埋められているため であろうと推定している.

5. まとめ

「鹿児島地域」において,既存の重力測点データ 15,641点と新規測点236点の合計15,877点を編集して, 重力異常図を作成した.出版した重力基本図は仮定密 度として2.3 g/cm³を使用したが,ここでは2.0 g/cm³, 2.67 g/cm³のブーゲー異常図も作成した.更に,同地 域を覆う地質分布の大きな密度差を考慮して,地殻表 層密度分布の推定とその分布を利用した可変密度ブー ゲー異常図を作成し,地質構造とブーゲー異常の関係 を考察した.その結果,別府 - 島原地溝,鹿児島地溝 のような大きな地質構造やカルデラに起因するブー ゲー異常を明らかにすることができた.

本研究において新たに測定した重力データの一覧を 付表に掲げる.また、本稿において使用した密度推定 プログラム、重力図や地質図の作図プログラムは、 JKGLIB Ver.2(村田,2007)として公開されている.

謝辞:「鹿児島地域重力図」を作成するにあたって,重 カデータの使用を許可して頂いた新エネルギー・産業 技術総合開発機構,金属鉱業事業団,名古屋大学, 鹿児島大学,熊本大学,島根大学,東京大学地震研究所, 国土地理院,都城市,金鉱業振興協会の各機関に感謝 いたします.

文 献

- 荒牧重雄(1969)鹿児島県国分地域の地質と火砕流堆 積物.地質学雑誌,75,425-442.
- 地質調査所(1985)西南日本周辺大陸棚の海底地質に 関する研究 昭和59年度研究報告書-九州南方海 域-.地質調査所,155p.
- 地質調査所重力探査グループ(中塚 正・広島俊男・ 駒澤正夫・牧野雅彦・須田芳朗・村田泰章) (1989a)地質調査所重力補正標準手順SPECG 1988 について、地調月報,40,601-611.
- 地質調査所重力探査グループ(中塚 正・広島俊男・ 駒澤正夫・牧野雅彦・須田芳朗・村田泰章) (1989b)地質調査所重力補正標準手順SPECG 1988 の処理プログラム.地質調査所研究資料集, no. 137, 49p.
- 地質調査総合センター (2003) 100万分の1日本地質図 第3版 CD-ROM 第2版.数値地質図 G-1,地質調 査総合センター.
- 地質調査総合センター編 (2004) 日本重力 CD-ROM 第 2版. 数値地質図 P-2, 地質調査総合センター.
- The Gravity Research Group in Southwest Japan

(Representatives: Shichi, R. and Yamamoto, A.) (2001) Gravity Measurements and Database in Southwest Japan, Gravity Database of Southwest Japan (CD-ROM), *Bull. Nagoya University Museum*, Special Rept., No. 9.

- 広島俊男・森尻理恵・駒澤正夫・牧野雅彦・村田泰章・ 名和一成(2001)大分地域重力図(ブーゲー異常). 重力図, no. 17, 地質調査所.
- 広島俊男・森尻理恵・駒澤正夫・牧野雅彦・村田泰章・ 名和一成 (2002) 大分地域の重力異常について. 地 質調査研究報告, **53**, 11-36.
- 金属鉱業事業団(2004)金属鉱業事業団重力測定値 データファイル.日本重力CD-ROM 第2版,数値 地質図P-2,産総研地質調査総合センター.
- 国土地理院 (1976) 日本重力網1975の設定.測地学会 誌, **22**, 65-76.
- 小室裕明・志知龍一・舌間洋二(2000) 雲仙火山地域 の重力異常.島根大学地球資源環境学研究報告, 19,97-100.
- 小林茂樹・志知龍一・西仲秀人・渡辺秀文・鬼澤真也 (1995) 霧島火山および周辺カルデラにおける稠密 重力測定.地震研究所彙報,70,103-136.
- 小林茂樹・志知龍一・鬼澤真也・及川 純・渡辺秀文 (1997)南九州の重力異常. Conductivity Anomaly 研究会論文集, 1997, 275-281.
- 駒澤正夫・広島俊男・石原丈実・村田泰章・山崎俊嗣・ 上嶋正人・牧野雅彦・森尻理恵・志知龍一・岸本清行・ 木川栄一(1999)100万分の1日本重力図(ブー ゲー異常).地質調査所.
- 駒澤正夫・広島俊男・石原丈実・村田泰章・山崎俊嗣・ 上嶋正人・牧野雅彦・森尻理恵・志知龍一・岸本清行・ 木川栄一・三品正明(2004)地質調査所重力測定 値データファイル.日本重力CD-ROM第2版,数 値地質図P-2,地質調査総合センター.
- 駒澤正夫・名和一成・村田泰章・牧野雅彦・森尻理恵・ 広島俊男・山崎俊嗣・西村清和・大熊茂雄(2005) 屋久島重力図(ブーゲー異常).重力図, no. 22, 産総研地質調査総合センター.
- 牧野雅彦・遠藤秀典(1999)鹿児島県出水市針原川土 石流地域の重力探査,物理探査,**52**,153-160.
- 牧野雅彦・駒澤正夫・森尻理恵・広島俊男・村田泰章・ 名和一成・上嶋正人・岸本清行・大熊茂雄(2003) 唐津地域重力図(ブーゲー異常).重力図,no.19, 産総研地質調査総合センター.
- 牧野雅彦・駒澤正夫・森尻理恵・広島俊男・村田泰章・ 名和一成・上嶋正人・岸本清行・大熊茂雄・志知龍一・ 小室裕明(2006)長崎地域重力図(ブーゲー異常). 重力図, no. 23,産総研地質調査総合センター.
- 宮町宏樹・東浦勝良・平野舟一郎・山本明彦(2000)桜

島火山における高密度重力測定. 鹿児島大学理学 部紀要, **33**, 101-116.

- 宮町宏樹・中野伸也・平野舟一郎・後藤和彦(2004) 1997年鹿児島県北西部地震の余震と重力異常の空 間分布.地震第2輯,**56**,383-386.
- 森尻理恵・広島俊男・駒澤正夫・牧野雅彦・村田泰章・ 名和一成・西島 潤・茂木 透(2001)福岡地域 重力図(ブーゲー異常).重力図, no. 18, 地質調 査所.
- 森尻理恵・広島俊男・駒澤正夫・牧野雅彦・村田泰章・ 名和一成・西島 潤・茂木 透(2002)福岡地域 の重力異常について.地質調査研究報告,53,573-594.
- Murata, Y. (1993) Estimation of Optimum Average Surficial Density From Gravity Data: An Objective Bayesian Approach. J. Geophys. Res., 98, 12097-12109.
- 日本列島の地質「九州地方」編集委員会編(1992)日 本列島の地質9 九州地方.共立出版社,東京, 371p.
- 村田泰章・名和一成・駒澤正夫・森尻理恵・広島俊男・ 牧野雅彦・山崎俊嗣・西村清和・大熊茂雄・志知龍一 (2004) 鹿児島地域重力図(ブーゲー異常).重力 図, no. 21, 産総研地質調査総合センター.
- 村田泰章(2007) 地質情報表示ソフトウェア・ライブ ラリJKGLIB ver.2. 地質調査総合センター研究資 料集, no. 455, 産総研地質調査総合センター.
- Nawa, K., Fukao, Y., Shichi, R. and Murata, Y. (1997) Inversion of gravity data to determine the terrain density distribution in southwest Japan. J. Geophys. Res., 102, 27703-27719.
- 名和一成·村田泰章·駒澤正夫·森尻理恵·広島俊男· 牧野雅彦·村上文敏·岸本清行·大熊茂雄·志知龍一

(2004) 宮崎地域重力図 (ブーゲー異常). 重力図, no.20, 産総研地質調査総合センター.

- 名和一成・村田泰章・駒澤正夫・森尻理恵・広島俊男・ 牧野雅彦・村上文敏・岸本清行・大熊茂雄・志知龍一 (2005)宮崎地域の重力異常について、地調研報, 56,183-208.
- 小川健三·須田芳朗·馬場健三(1981)鹿児島·宮崎 県霧島地域等重力線図,1:50,000.地熱地域等重 力線図,4,1 sheet,地質調査所.
- 瀬谷 清・小川健三(1971)えびの・吉松地区地震地 域の重力異常について.防災科学技術総合研究報 告・えびの・吉松地区地震に関する特別研究,26, 47-61,国立防災科学技術センター.
- 志知龍一・山本明彦・工藤 健(2007)日本列島重力 図1:750,000. 文科省科学研究費補助金(基盤研究 (B))日本列島重力データベースの構築(平成16年 度~平成18年度)(課題番号16340133),28 sheets,
- 新エネルギー・産業技術総合開発機構(2004)新エネ ルギー・産業技術総合開発機構重力測定値データ ファイル.日本重力CD-ROM第2版,数値地質図 P-2,産総研地質調査総合センター.
- 田島広一・荒牧重雄(1980) 霧島火山周辺のBouguer 異常. 地震研究所彙報, 55, 241-257.
- 山本明彦・志知龍一(2004)日本列島重力アトラスー 西南日本および中央日本-,136 p.,1 CD-ROM, 東京大学出版会.
- 山崎俊嗣・西村清和(1985)九州南方海域の重力異常, 西南日本周辺大陸棚の海底地質に関する研究 昭 和59年度研究報告書一九州南方海域一.地質調査 所,20-22.

(受付:2007年9月3日;受理:2007年11月1日)

付表 A-1 鹿児島地域新規調査重力データ一覧(1/5). 凡例は 370 ページを参照. Table A-1 Gravity data of Kagoshima district observed in 2001.

			Gobs	Gnorm	Н	TI	Tw	BGC	FAC+ A	-
No	Lat	Lon	(mGal)	(mGal)	(m)	(mGal)	(mGal)	(mGal)	(mGal)	TYPE
1	3227.724	13011.063	979564.594	979522.005	5.19	0.297	0.007	-0.437	2.470	BM1
2	3228.223	13009.297	979556.865	979522.685	35.47	0.486	0.011	-2.988	11.813	FS
3	3227.970	13008.024	979552.195	979522.340	62.83	0.720	0.015	-5.291	20.254	FS
4	3228.862	13008.139	979548.510	979523.557	76.61	1.283	0.017	-6.450	24.505	FS
5	3229.936	13007.654	979553.826	979525.023	54.21	1.007	0.016	-4.565	17.593	FS
6	3229.615	13009.913	979546.706	979524.584	65.26	0.210	0.015	-5.495	21.002	FS
7	3230.147	13008.209	979557.140	979525.310	33.39	0.393	0.014	-2.812	11.170	FS
8	3230.954	13008.157	979546.487	979526.411	94.97	0.502	0.024	-7.995	30.169	FS
9	3230.822	13009.557	979558.284	979526.232	32.69	0.361	0.014	-2.753	10.955	FS
10	3230.798	13010.683	979563.837	979526.198	2.84	0.188	0.009	-0.239	1.746	FS
11	3231.765	13010.699	979557.838	979527.519	40.58	0.517	0.023	-3.417	13.387	FS
12	3232.852	13011.161	979566.833	979529.003	3.08	0.075	0.057	-0.260	1.820	FS
13	3232.456	13009.525	979562.105	979528.462	25.84	0.856	0.025	-2.176	8.840	FS
14	3231.677	13009.231	979556.021	979527.399	50.19	0.711	0.021	-4.227	16.354	FS
15	3231.660	13007.781	979532.751	979527.376	165.00	1.272	0.047	-13.882	51.772	FS
16	3232.741	13007.871	979567.792	979528.851	2.21	0.331	0.020	-0.186	1.551	FS
17	3231.779	13006.879	979545.170	979527.538	109.49	0.971	0.043	-9.216	34.646	FS
18	3231.523	13006.332	979563.099	979527.188	20.70	1.447	0.018	-1.744	7.257	FS
19	3230.751	13006.451	979541.902	979526.135	123.31	0.988	0.034	-10.379	38.912	FS
20	3230.817	13005.176	979558.757	979526.225	43.88	1.023	0.024	-3.696	14.407	FS
21	3230.318	13004.312	979552.368	979525.543	69.31	1.131	0.032	-5.836	22.253	FS
22	3232.017	13002.272	979566.869	979527.863	2.28	0.129	0.041	-0.192	1.574	FS
23	3231.845	13000.877	979565.954	979527.628	5.08	0.289	0.061	-0.428	2.436	FS
24	3230.777	13003.377	979563.412	979526.170	13.09	0.216	0.025	-1.103	4.908	TP4
25	3228.416	13011.683	979559.557	979522.949	11.79	0.179	0.009	-0.993	4.507	BM1
26	3230.329	13011.215	979561.125	979525.559	9.15	0.167	0.009	-0.771	3.693	BM1
27	3231.124	13011.505	979563.420	979526.644	2.56	0.089	0.011	-0.215	1.659	BM1
28	3227.394	13009.176	979554.569	979521.555	44.70	1.250	0.012	-3.764	14.658	FS
29	3226.628	13008.541	979548.281	979520.511	72.83	1.695	0.015	-6.132	23.337	FS
30	3226.541	13007.506	979540.321	979520.392	112.66	1.312	0.020	-9.482	35.624	FS
31	3225.466	13006.076	979504.498	979518.926	288.40	1.136	0.043	-24.238	89.836	FS
32	3225.642	13005.185	979494.512	979519.167	333.22	2.202	0.055	-27.995	103.661	FS
33	3226.501	13006.377	979526.092	979520.337	181.52	2.102	0.030	-15.270	56.867	FS
34	3228.109	13007.074	979544.204	979522.530	95.87	2.286	0.020	-8.071	30.446	FS
35	3228.052	13005.438	979495.421	979522.452	341.17	2.491	0.057	-28.661	106.113	FS
36	3229.097	13006.251	979488.789	979523.878	379.05	2.273	0.059	-31.833	117.798	FS
37	3229.637	13004.968	979504.460	979524.615	300.82	2.403	0.066	-25.280	93.667	FS
38	3229.248	13004.074	979550.538	979524.084	75.75	1.181	0.031	-6.378	24.240	FS
39	3228.537	13003.893	979537.789	979523.114	136.90	1.728	0.044	-11.521	43.104	FS
40	3229.880	13002.907	979563.189	979524.946	8.99	0.324	0.023	-0.757	3.643	FS
41	3228.979	13002.584	979562.742	979523.717	8.18	0.908	0.027	-0.689	3.395	FS
42	3227.643	13003.798	979542.526	979521.895	106.34	2.517	0.036	-8.952	33.677	FS
43	3226.784	13005.295	979523.924	979520.723	186.40	3.774	0.036	-15.680	58.373	FS
44	3226.888	13003.698	979529.980	979520.864	168.10	2.240	0.048	-14.143	52.728	FS
45	3226.645	13002.571	979542.980	979520.533	95.27	3.976	0.048	-8.020	30.261	FS
46	3226.336	13001.065	979561.738	979520.112	6.01	2.151	0.049	-0.506	2.723	FS
47	3224.564	13000.492	979557.959	979517.697	48.18	2.290	0.067	-4.058	15.734	FS
48	3223.586	13001.022	979556.016	979516.365	46.90	2.541	0.046	-3.950	15.339	FS
49	3223.206	13002.183	979544.023	979515.847	86.63	2.571	0.042	-7.293	27.595	FS
50	3222.708	13000.050	979571.677	979515.169	2.34	0.739	0.039	-0.197	1.591	FS

付表 A-1 つづき (2/5). 凡例は 370 ページを参照. Table A-1 Continued.

No	Lat	Lon	Gobs (mGal)	Gnorm (mGal)	H (m)	TI (mGal)	Tw (mGal)	BGC (mGal)	FAC+ A	TYPE
51	3225 528	13001 550	979557 707	979519.010	20.93	4 269	0.032	-1 763	7 328	FS
52	3225.520	13003 542	979542 649	979519.033	95.55	2 507	0.002	-8.043	30 345	FS
53	3226.044	13011 933	979569 623	979520 693	2 63	0.326	0.007	-0.221	1 681	BM1
54	3225 315	13011 944	979569 511	979518 721	2.00 8.76	0.020	0.007	-0.738	3 572	FS
55	3226.070	13011468	979565 828	979519 750	10.70	1.370	0.000	-0.919	4 236	FS
56	3220.070	13010 266	979550 440	979518 741	68.73	1.570	0.000	-5 787	22 072	FS
57	3225.530	13009.050	979595.440	979510.741	176.54	2 986	0.014	-1/1 852	55 332	FS
50	3223.332	13005.030	979525.059	979519.010	261.00	2.300	0.024	-30 380	119 477	FS FS
50	3224.300	13005.847	979407.373	979516 405	1/12/20	1 072	0.034	-12/178	112.477	FS
60	3223.010	13007 530	070525 8/0	070515 610	122 01	0.520	0.020	-10 3/7	20.010	FS FS
61	3223.002	13007.330	979533.040	07051/ 01/	121.04	1 5/1	0.024	-11.005	11 542	FS FS
60	2222.021	12005.308	979552.002	070512 271	17/0	1.077	0.030	-1 474	6 267	ГО ЕС
62	3220.033	13005.142	979532.029	979512.371	17.49	1 7 9 2	0.022	-1.474	16.036	FS EQ
64	3221.070 2002.215	12004 025	979540.010	979515.750	49.10	1.700	0.024	-4.140 -11.071	10.030	FS EQ
04 65	3223.310	12004.935	9/9002.0/9	979010.990	160 70	1.002	0.033	-12.600	41.401 51.060	го Fe
66	3224.093 2222 615	12002 440	979526.292	979517.737	102.70	1.074	0.030	-15 102	56 502	го EQ
67	3223.010	13003.440	979524.203	979510.404	100.00	2.107	0.040	-11 555	12 220	го Fe
60	3224.470	13002.981	9/9034.000	9/901/.009	137.31	2.190	0.040		43.229	го го
00 60	3224.048	13001.040	9/9521.394	9/901/.0/0	210.94	1.312	0.088	-18.100	07.484	го го
09	3223.103	12959.437	9/9001.308	9/9515./00	00.14 100.51	1.41Z	0.1/4	-5.485	20.90/	F3
70	3222.020	12939.014	9/9001.182	979314.240	100.01	2.4/9	0.210	-8.401	31.8/8	го го
71	3221.180	12958.784	9/953/.82/	979513.095	103.42	3.281	0.280	-12.909	48.200	F-5
72	3219.902	12959.000	9/9504.045	979511.431	0.01	0.780	0.001	-0.743	3.389	F3
/3	3221.430	12959.555	9/904/.912	979013.429	108.01	1.422	0.108	-9.142	34.370	F3
74	3222.030	12959.048	9/950/.982	979514.252	17.57	1.290	0.000	-1.480	0.292	F-5
/5	3222.065	13001.370	979555.293	979514.293	36.28	2.986	0.037	-3.056	12.064	FS
/6	3221.084	13000.073	9/9513.161	9/9512.95/	257.39	3.889	0.148	-21.638	80.272	FS
71	3220.608	13002.350	9/9532.116	979512.310	129.07	1./58	0.053	-10.862	40.687	F5
/8	3221.825	13002.817	9/949/./0/	979513.966	301.61	2.386	0.078	-25.346	93.911	FS
/9	3222.539	13003.702	9/9493.831	979514.938	325.36	1./68	0.069	-27.336	101.236	FS
08	3224.191	13011.790	9/9569./02	9/951/.189	2.80	0.495	0.010	-0.241	1./52	FS
81	3224.242	13010.309	9/954/.645	9/951/.258	81.39	1.566	0.015	-6.852	25.977	FS
82	3224.188	13008.832	979538.599	9/951/.185	118.26	1.13/	0.021	-9.953	37.352	FS
83	3222.125	13007.842	979529.646	9/9514.3/5	146.94	1.110	0.027	-12.365	46.201	FS
84	3221.929	13006.901	9/950/.564	9/9514.108	246.91	1.938	0.040	-20.759	//.038	FS
85	3223.153	13008.880	9/9542./93	9/9515.//5	89.68	1.248	0.020	-7.550	28.536	FS
86	3221./68	13009.016	9/9540.83/	9/9513.889	97.30	0.559	0.023	-8.191	30.887	FS
8/	3220.448	13009.317	979558.229	979512.092	3.96	0.865	0.014	-0.333	2.091	FS
88	3220.378	13010.478	979559.655	9/9511.996	3.08	0.793	0.013	-0.260	1.820	FS
89	3221.705	13011.038	9/9561.3/0	9/9513.803	6.35	0.434	0.012	-0.535	2.829	FS
90	3216.668	13013.066	9/9549.000	9/9506.949	2.86	0.789	0.023	-0.241	1./52	FS
91	3215./65	13013.18/	9/9531.848	9/9505./22	/2.36	0.993	0.061	-6.093	23.194	FS
92	3216.557	13014.184	9/945/.4/9	9/9506./98	393.10	10.101	0.188	-33.009	122.131	TP2
93	3216.193	13014.818	979544.899	979506.304	3.39	1.093	0.029	-0.286	1.916	FS
94	3216.894	13015.484	9/9546.109	9/9507.257	4.14	1.518	0.025	-0.349	2.147	FS ≂∽
95	3217.859	13014.442	979535.006	979508.569	82.12	1.286	0.088	-6.914	26.203	FS
96	3216.718	13012.941	979549.644	979507.017	2.75	0.528	0.027	-0.232	1.718	FS
97	3219.007	13010.341	9/9540.325	9/9510.131	80.50	1.734	0.085	-6.778	25.704	FS −
98	3219.743	13011.091	9/9503.218	9/9511.133	259.38	3.719	0.110	-21.805	80.885	FS ≂∽
99	3219.378	13011.978	979558.172	979510.636	3.31	0.437	0.069	-0.279	1.891	FS
100	3220.901	13012.403	979560.855	979512.709	3.07	0.836	0.022	-0.259	1.818	FS

鹿児島地域の重力異常について(村田ほか)

付表 A-1 つづき (3/5). 凡例は 370 ページを参照. Table A-1 Continued.

			Gobs	Gnorm	Н	TI	Tw	BGC	FAC+ A	T)/DE
No	Lat	Lon	(mGal)	(mGal)	(m)	(mGal)	(mGal)	(mGal)	(mGal)	TYPE
101	3221.990	13013.240	979563.899	979514.191	3.78	0.502	0.022	-0.319	2.037	FS
102	3222.860	13012.997	979565.065	979515.375	13.13	0.743	0.017	-1.106	4.920	FS
103	3223.623	13012.347	979568.710	979516.416	6.74	0.585	0.011	-0.568	2.949	FS
104	3222.562	13011.704	979564.871	979514.970	2.46	0.443	0.013	-0.207	1.630	FS
105	3223.444	13010.071	979558.537	979516.171	15.69	2.467	0.011	-1.321	5.709	FS
106	3222.062	13010.010	979554.533	979514.289	34.94	0.782	0.015	-2.943	11.650	FS
107	3219.321	13009.518	979557.299	979510.558	6.22	0.338	0.027	-0.524	2.788	FS
108	3218.712	13008.650	979555.585	979509.730	5.61	0.460	0.020	-0.473	2.601	FS
109	3219.445	13007.730	979530.350	979510.727	131.17	0.527	0.035	-11.039	41.335	FS
110	3217.789	13009.886	979544.295	979508.474	48.88	0.946	0.160	-4.116	15.949	FS
111	3217.502	13008.193	979554.032	979508.083	2.35	0.930	0.021	-0.198	1.595	FS
112	3216.599	13007.284	979551.493	979506.855	3.52	1.362	0.029	-0.297	1.957	FS
113	3215.931	13006.457	979549.298	979505.947	4.09	1.246	0.030	-0.345	2.132	FS
114	3215.506	13004.085	979529.832	979505.370	84.34	1.590	0.048	-7.101	26.890	FS
115	3216.878	13005.298	979537.347	979507.235	54.77	2.911	0.035	-4.612	17.765	FS
116	3217.933	13004.253	979551.131	979508.670	2.78	0.826	0.026	-0.234	1.728	FS
117	3218.080	13006.594	979513.487	979508.870	191.45	2.447	0.051	-16.103	59.929	FS
118	3219.538	13004.463	979553.712	979510.853	4.34	0.936	0.023	-0.366	2.209	FS
119	3221.176	13003.563	979546.652	979513.083	52.08	2.023	0.030	-4.386	16.936	FS
120	3219.884	13003.020	979510.257	979511.325	223.82	1.725	0.067	-18.821	69.915	FS
121	3218 623	13003 042	979551 933	979509 608	3 50	1 475	0.029	-0.295	1 951	FS
122	3219.601	13001.292	979556.097	979510.939	7.38	0.961	0.034	-0.622	3.146	FS
123	3218 910	13000 320	979557 578	979509 998	2.95	1 0 3 9	0.043	-0.249	1 781	FS
124	3217 753	13002 744	979550 718	979508 425	2.54	0 792	0.032	-0.214	1 653	FS
125	3216.660	13002.967	979548,730	979506.938	2.02	0.649	0.030	-0.171	1.495	FS
126	3217 292	13001 539	979548 766	979507 798	1 78	1 460	0.036	-0 150	1 420	FS
127	3216 172	13001 582	979547 639	979506 275	4 2 3	0 792	0.039	-0.356	2 1 7 5	FS
128	3219 567	13006 168	979548 681	979510 893	32 79	0.751	0.022	-2 762	10,986	FS
129	3220 538	13006 433	979536 159	979512 215	100 71	1 764	0.029	-8478	31 939	FS
130	3216 212	13000 277	979539 498	979506 330	43 39	1 581	0.068	-3 655	14 257	FS
131	3216 140	12959 465	979523 716	979506 232	130.63	1 157	0 174	-10.994	41 169	FS
132	3215 512	12958 785	979526 196	979505 379	120 57	1 652	0 2 3 9	-10 148	38 066	FS
133	3214 747	12958 940	979549 603	979504 339	4 39	0.660	0.072	-0.370	2 2 2 4	FS
134	3215 207	12959 642	979545 985	979504 963	12 59	1 062	0.062	-1.061	4 754	FS
135	3215.201	13001.419	979542.825	979504.956	22.06	1.031	0.047	-1.859	7.677	FS
136	3214.543	13000.322	979547.162	979504.062	2.31	0.467	0.050	-0.195	1.584	FS
137	3214.033	13001.583	979466.807	979503.369	354.91	6.718	0.164	-29.812	110.352	FS
138	3213 325	13000 882	979544 514	979502 407	4 34	0.652	0.052	-0.366	2 2 1 0	FS
139	3212.041	13000.417	979544.610	979500.663	2.11	0.241	0.055	-0.178	1.520	FS
140	3210.411	13001.330	979542.019	979498.450	4.00	0.260	0.064	-0.337	2.103	FS
141	3209.818	13001.053	979542.337	979497.645	4.83	0.187	0.079	-0.407	2.361	FS
142	3209.617	13002.663	979532.779	979497.373	35.19	0.422	0.123	-2.964	11.725	FS
143	3210.731	13002.281	979541.066	979498.884	2.56	0.156	0.057	-0.216	1.660	FS
144	3212 044	13001 782	979541 566	979500 667	10.33	0.390	0.057	-0.871	4 058	FS
145	3212 985	13002 655	979538 860	979501 945	24 37	0.747	0.050	-2.052	8 387	FS
146	3212 827	13004 454	979543 667	979501 731	4 2 2	0.737	0.047	-0.356	2 173	FS
147	3214 071	13004 682	979545 384	979503 420	2 68	1 012	0.033	-0 226	1 698	FS
148	3214 250	13006 072	979547 019	979503 663	3 80	0.543	0.072	-0.320	2 043	FS
149	3214,489	13003.016	979532.941	979503,988	67.65	0.436	0.051	-5,696	21.739	FS
150	3227.443	13013.375	979570.380	979521.622	4.54	0.510	0.010	-0.383	2.271	FS

付表 A-1 つづき(4/5). 凡例は 370 ページを参照. Table A-1 Continued.

	. .		Gobs	Gnorm	Н	TI	Tw	BGC	FAC+ A	
No	Lat	Lon	(mGal)	(mGal)	(m)	(mGal)	(mGal)	(mGal)	(mGal)	TYPE
151	3227.730	13014.219	979570.339	979522.013	4.63	0.426	0.010	-0.390	2.299	FS
152	3226.652	13013.147	979558.015	979520.543	73.38	0.670	0.014	-6.179	23.508	FS
153	3226.582	13014.164	979543.987	979520.447	147.32	1.065	0.021	-12.397	46.319	FS
154	3225.601	13013.373	979574.842	979519.110	1.67	0.282	0.007	-0.141	1.386	FS
155	3219.804	13020.959	979486.577	979511.215	279.93	4.267	0.157	-23.528	87.222	FS
156	3219.541	13020.904	979446.843	979510.858	429.58	11.283	0.272	-36.061	133.385	FS
157	3219.739	13020.081	979547.863	979511.127	2.76	1.430	0.016	-0.232	1.720	FS
158	3218.846	13019.699	979546.907	979509.911	2.63	0.467	0.026	-0.222	1.682	FS
159	3221.068	13021.386	979551.058	979512.936	2.52	0.673	0.017	-0.212	1.647	FS
160	3220.824	13022.489	979546.516	979512.604	3.23	1.337	0.079	-0.273	1.868	FS
161	3220.093	13021.823	979544.894	979511.609	2.61	2.128	0.021	-0.220	1.676	FS
162	3220.837	13020.010	979553.065	979512.621	3.23	0.786	0.010	-0.272	1.866	FS
163	3221.429	13018.053	979558.888	979513.427	2.75	0.599	0.033	-0.231	1.717	FS
164	3221.154	13019.001	979556.553	979513.053	2.29	0.482	0.011	-0.193	1.576	FS
165	3220.277	13020.278	979549.815	979511.859	3.00	0.985	0.012	-0.253	1.796	С
166	3224.506	13014.766	979575.319	979517.618	3.66	0.642	0.008	-0.309	2.000	FS
167	3225.664	13015.088	979571.578	979519.196	30.81	0.963	0.009	-2.595	10.375	FS
168	3226.475	13015.648	979527.757	979520.301	241.31	1.454	0.027	-20.289	75.310	FS
169	3226.689	13017.109	979537.818	979520.594	197.44	2.106	0.020	-16.607	61.779	FS
170	3225.550	13016.908	979575.265	979519.041	18.38	1.617	0.007	-1.548	6.541	FS
171	3226.590	13017.732	979567.886	979520.458	51.13	2.074	0.008	-4.306	16.644	FS
172	3226.800	13019.222	979551.713	979520.745	116.48	3.280	0.012	-9.804	36.805	FS
173	3227.992	13020.370	979531.627	979522.370	222.73	1.557	0.017	-18.730	69.579	FS
174	3227.806	13018.067	979567.743	979522.116	41.12	1.528	0.007	-3.464	13.557	FS
175	3228.656	13017.885	979571.388	979523.276	8.58	0.778	0.005	-0.723	3.518	FS
176	3224.568	13016.527	979575.518	979517.702	4.10	0.590	0.011	-0.345	2.134	FS
177	3225.295	13018.282	979481.901	979518.694	442.49	4.456	0.053	-37.140	137.364	FS
178	3224.000	13017.685	979570.969	979516.928	4.49	0.933	0.024	-0.378	2.254	FS
179	3223.932	13019.363	979566.372	979516.836	3.03	0.905	0.011	-0.255	1.804	FS
180	3224.754	13020.218	979560.512	979517.956	38.32	1.295	0.012	-3.227	12.691	FS
181	3226.194	13020.205	979544.467	979519.919	141.42	2.877	0.013	-11.901	44.498	FS
182	3226.077	13021.837	979565.561	979519.760	18.21	2.410	0.005	-1.534	6.489	FS
183	3226.827	13022.918	979538.338	979520.782	164.44	1.113	0.016	-13.835	51.599	FS
184	3224.759	13022.656	979505.903	979517.963	273.92	2.363	0.040	-23.025	85.370	FS
185	3224.014	13021.154	979547.087	979516.947	78.89	1.149	0.031	-6.642	25.209	FS
186	3222.619	13021.338	979558.106	979515.047	2.74	0.312	0.032	-0.231	1.714	FS
187	3223.294	13022.249	979558.460	979515.967	2.50	0.600	0.020	-0.211	1.642	FS
188	3223.646	13023.491	979556.274	979516.446	4.34	1.051	0.012	-0.365	2.208	FS
189	3223.593	13025.239	979545.028	979516.374	38.93	0.887	0.055	-3.279	12.881	FS
190	3222.091	13025.099	979537.511	979514.329	48.29	1.265	0.159	-4.067	15.767	FS
191	3222.883	13025.026	979550.271	979515.408	3.34	0.652	0.018	-0.281	1.899	FS
192	3224.906	13024.650	979557.398	979518.163	5.96	1.097	0.016	-0.503	2.710	FS
193	3225.995	13024.321	979560.778	979519.647	7.22	1.712	0.006	-0.609	3.098	FS
194	3227.457	13025.701	979561.745	979521.641	4.33	0.947	0.012	-0.365	2.207	FS
195	3229.330	13026.348	979566.755	979524.196	3.90	1.099	0.013	-0.328	2.072	FS
196	3230.998	13027.346	979566.443	979526.472	6.83	0.356	0.010	-0.576	2.978	FS
197	3230.838	13025.782	979571.049	979526.253	0.88	0.249	0.002	-0.074	1.141	FS
198	3230.199	13025.661	979570.137	979525.381	3.67	0.515	0.003	-0.309	2.002	FS
199	3228.983	13025.021	979566.351	979523.723	17.98	1.375	0.004	-1.515	6.417	FS
200	3227.619	13024.645	979556.336	979521.862	46.24	1,669	0.010	-3.894	15.135	FS

鹿児島地域の重力異常について(村田ほか)

付表 A-1 つづき (5/5). 凡例は 370 ページを参照. Table A-1 Continued.

No	Lat	Lon	Gobs	Gnorm	H	TI	Tw	BGC	FAC+ A	TYPE
			(mGal)	(mGal)	(m)	(mGal)	(mGal)	(mGal)	(mGal)	
201	3228.18/	13023.497	9/9569.501	9/9522.636	12.26	1.544	0.003	-1.033	4.653	FS
202	3227.636	13022.122	979563.944	979521.885	50.37	0.839	0.006	-4.242	16.409	FS
203	3229.115	13022.799	979556.048	979523.902	87.92	0.737	0.009	-7.402	27.994	FS
204	3229.112	13021.663	979564.508	979523.898	43.14	2.073	0.007	-3.633	14.178	FS
205	3227.940	13016.309	979538.889	979522.299	161.70	2.368	0.027	-13.605	50.754	FS
206	3229.400	13019.331	979553.125	979524.291	98.13	1.045	0.014	-8.261	31.142	FS
207	3230.967	13018.981	979568.882	979526.429	4.10	0.211	0.012	-0.345	2.134	FS
208	3231.075	13020.591	979570.615	979526.578	4.01	0.267	0.006	-0.338	2.107	FS
209	3230.802	13022.081	979575.628	979526.205	3.62	0.323	0.004	-0.305	1.986	FS
210	3230.907	13023.240	979576.729	979526.347	3.92	0.162	0.007	-0.330	2.079	FS
211	3229.871	13023.623	979573.419	979524.934	3.60	0.360	0.004	-0.303	1.981	FS
212	3230.882	13024.380	979574.281	979526.313	4.54	0.189	0.006	-0.382	2.269	FS
213	3232.501	13025.318	979574.317	979528.524	9.96	0.100	0.008	-0.839	3.942	FS
214	3232.598	13023.942	979576.082	979528.657	3.90	0.088	0.008	-0.329	2.074	FS
215	3233.951	13024.555	979574.803	979530.504	1.20	0.130	0.007	-0.101	1.240	FS
216	3233.601	13025.787	979577.299	979530.026	2.85	0.254	0.004	-0.240	1.749	FS
217	3233.285	13026.945	979573.555	979529.594	2.82	0.080	0.004	-0.238	1.741	FS
218	3234.763	13028.102	979574.637	979531.614	1.80	0.207	0.003	-0.152	1.425	FS
219	3234.552	13028.869	979571.144	979531.325	2.16	0.276	0.003	-0.182	1.535	FS
220	3233.880	13028.319	979567.198	979530.407	21.68	0.806	0.008	-1.826	7.557	FS
221	3232.462	13027.841	979568.105	979528.471	3.71	0.208	0.014	-0.313	2.016	FS
222	3234.822	13025.464	979573.550	979531.694	4.55	0.087	0.005	-0.383	2.274	FS
223	3234.845	13023.146	979563.355	979531.726	34.71	0.518	0.055	-2.923	11.578	FS
224	3235.825	13024.298	979566.180	979533.064	3.45	0.152	0.011	-0.291	1.934	FS
225	3236.751	13025.515	979557.480	979534.331	35.96	0.248	0.035	-3.028	11.962	FS
226	3235.131	13027.190	979574.936	979532.117	2.61	0.083	0.004	-0.220	1.675	FS
227	3235.838	13026.117	979565.800	979533.083	29.38	0.255	0.010	-2.474	9.933	FS
228	3237.087	13026.669	979567.480	979534.790	3.00	0.628	0.009	-0.253	1.796	FS
229	3236.560	13027.954	979566.582	979534.069	21.28	0.480	0.010	-1.793	7.436	FS
230	3237.854	13027.489	979561.016	979535.839	14.95	2.154	0.048	-1.259	5.481	FS
231	3238.503	13028.740	979564.216	979536.726	6.02	0.588	0.018	-0.507	2.727	FS
232	3237.237	13028.447	979562.098	979534.996	33.07	1.316	0.011	-2.785	11.072	FS
233	3237.599	13029.404	979567.828	979535.490	7.21	0.827	0.004	-0.608	3.096	FS
234	3235.984	13029.004	979572.032	979533.283	0.87	0.275	0.002	-0.073	1.139	FS
235	3235.631	13030.597	979569.842	979532.800	3.73	0.121	0.010	-0.314	2.019	FS
236	3234.806	13029.684	979570.692	979531.673	2.20	0.331	0.004	-0.186	1.550	FS

凡例	
----	--

No:	測点番号
Lat:	緯度(北緯32度3.074分を、3203.074と表記)
Lon:	経度(東経131度14.398分を、13114.398と表記)
Gobs:	測定重力値(mGal)
Gnorm:	正規重力値(mGal)
H:	標高(m)
TI:	陸域地形補正値 (mGal/2.0 g/cm ³)
Tw:	海域地形補正値 (mGal / 1.0 g/cm ³)
BGC:	ブーゲー補正値 (mGal / 2.0 g/cm ³)
FAC+A:	フリーエア補正値+大気補正値(mGal)
TYPE:	測点位置決定法
	FS: 高速静止GPS測量、BM1: 一等水準点、TP2: 2等三角点、TP4: 4等三角点、C: 等高線

任意の ρ (地殻表層岩石密度)と ρ_w (海水密度)を仮定した時のブーゲー異常値Gbは、次式で計算される。 Gb = Gobs - Gnorm + FAC + A + (BGC + TI) × ρ / 2.0 + Tw × (ρ_w - 1.03)

Legend

na	
No:	Station Number
Lat:	Latitude (e.g. 3203.074 means 32 degrees 3.074 minutes North)
Lon:	Longitude (e.g. 3203.074 means 32 degrees 14.398 minutes East)
Gobs:	Observed gravity value (mGal)
Gnorm:	Normal gravity value (mGal)
H:	Height (m)
TI:	Lithospheric terrain correction value (mGal / 2.0 g/cm 3)
Tw:	Hydrospheric terrain correction value (mGal / 1.0 g/cm 3)
BGC:	Bouguer correction value (mGal / 2.0 g/cm 3)
FAC+A:	Free-air and atmospheric correction value (mGal)
TYPE:	Positioning method of the stations.
	FS: Fast static GPS positioning, BM1: First order bench mark, TP2: Second order triangulation point. TP4: Fourth order triangulation point. C: Contour

Bouguer Anomaly value can be calculated as

Gb = Gobs - Gnorm + FAC + A + (BGC + TI) × ρ / 2.0 + Tw × ρ_w

where $\,\rho\,$ and $\,\rho_{\,\rm w}\,$ are the assumed densities of surficial rocks and sea water, respectively.